Skip to main content
Log in

Parameter constraints from shadows of Kerr–Newman-dS black holes with cloud strings and quintessence

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Shadows of the Kerr–Newman-dS black hole surrounded by quintessence and a cloud of strings are investigated. For a spherically symmetric nonrotating black hole, its shadow is circular and its size is independent of an observation angle and a plane on which a circular photon orbit exists. The shadow sizes are significantly influenced by the parameters involving the cloud of strings, quintessence parameter, magnitude of quintessential state parameter, and cosmological constant. The black hole shadows increase with the cloud of strings and negative quintessential state parameter increasing or the quintessence parameter and cosmological constant decreasing. When the black hole is spinning and axially symmetric, the black hole shadow is dependent on the observation angle and the black hole spin. The effects of the parameters excluding the spin parameter and the observation angle on the sizes of black hole shadows in the rotating case are similar to those in the nonrotating case. The black hole shadows decrease as the black hole spins increase. When the observation angle in the range of 0 and \(\pi /2\) is large, the black hole shadow is deformed like the D shape for a high spin, but is close to a circle for a low spin. When the observation angle is small, the black hole shadow seems to be a circle regardless of the high or low spin case. Based on the Event Horizon Telescope observations of M87*, the constraint of the curvature radius is used to constrain these parameters. For slowly rotating black holes, the allowed regions of the parameters including the cosmological constant are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Strictly speaking, the generating function for the Hamiltonian (12) with \(E\rightarrow -p_t\) and \(L\rightarrow p_\phi \) should be \(S=-{\mathcal {H}}\lambda -Et+L\phi +S_{r}(r)+S_{\theta }(\theta )\), where \({\mathcal {H}}\) is the third constant of motion (12). The Hamilton–Jacobi equation is obtained by substituting \(p_t=\frac{\partial S}{\partial t}\), \(p_r=\frac{\partial S}{\partial r}\), \(p_\theta =\frac{\partial S}{\partial \theta }\) and \(p_\phi =\frac{\partial S}{\partial \phi }\) into the equation \(\frac{\partial S}{\partial \lambda }+\frac{1}{2}g^{\mu \nu }p_\mu p_\nu =0\), where \(g^{\mu \nu }\) denotes the contravariant tensor of the metric (1).

References

  1. Abbott, B.P., et al. [LIGO Scientific and Virgo]: Phys. Rev. Lett. 116(6), 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102. arXiv:1602.03837 [gr-qc]

  2. Akiyama, K., et al. [Event Horizon Telescope]: Astrophys. J. Lett. 875, L1 (2019) https://doi.org/10.3847/2041-8213/ab0ec7. arXiv:1906.11238 [astro-ph.GA]

  3. Synge, J.L.: Mon. Not. R. Astron. Soc. 131(3), 463–466 (1966). https://doi.org/10.1093/mnras/131.3.463

    Article  ADS  Google Scholar 

  4. Luminet, J.P.: Astron. Astrophys. 75, 228–235 (1979)

    ADS  Google Scholar 

  5. Bardeen, J.M.: Proceedings, Ecole d’Eté de Physique Théorique: Les Astres Occlus: Les Houches, France, August, 1972, 215–240, 215–240 (1973)

  6. Kocherlakota, P., et al., [Event Horizon Telescope].: Phys. Rev. D 103(10), 104047 (2021). https://doi.org/10.1103/PhysRevD.103.104047. arXiv:2105.09343 [gr-qc]

  7. Tsukamoto, N.: Phys. Rev. D 97(6), 064021 (2018). https://doi.org/10.1103/PhysRevD.97.064021. arXiv:1708.07427 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  8. Babar, G.Z., Babar, A.Z., Atamurotov, F.: Eur. Phys. J. C 80(8), 761 (2020). https://doi.org/10.1140/epjc/s10052-020-8346-3. arXiv:2008.05845 [gr-qc]

    Article  ADS  Google Scholar 

  9. Grenzebach, A., Perlick, V., Lämmerzahl, C.: Phys. Rev. D 89(12), 124004 (2014). https://doi.org/10.1103/PhysRevD.89.124004. arXiv:1403.5234 [gr-qc]

    Article  ADS  Google Scholar 

  10. Xavier, S.V.M.C.B., Lima Junior, H.C.D., Crispino, L.C.B.: Phys. Rev. D 107(6), 064040 (2023) https://doi.org/10.1103/PhysRevD.107.064040. arXiv:2303.17666 [gr-qc]

  11. Jusufi, K., Jamil, M., Zhu, T.: Eur. Phys. J. C 80(5), 354 (2020). https://doi.org/10.1140/epjc/s10052-020-7899-5. arXiv:2005.05299 [gr-qc]

    Article  ADS  Google Scholar 

  12. Konoplya, R.A.: Phys. Lett. B 795, 1–6 (2019). https://doi.org/10.1016/j.physletb.2019.05.043. arXiv:1905.00064 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  13. Hou, X., Xu, Z., Zhou, M., Wang, J.: JCAP 07, 015 (2018). https://doi.org/10.1088/1475-7516/2018/07/015. arXiv:1804.08110 [gr-qc]

    Article  ADS  Google Scholar 

  14. Cunha, P.V.P., Herdeiro, C.A.R., Radu, E., Runarsson, H.F.: Phys. Rev. Lett. 115(21), 211102 (2015). https://doi.org/10.1103/PhysRevLett.115.211102. arXiv:1509.00021 [gr-qc]

    Article  ADS  Google Scholar 

  15. Gralla, S.E., Holz, D.E., Wald, R.M.: Phys. Rev. D 100(2), 024018 (2019). https://doi.org/10.1103/PhysRevD.100.024018. arXiv:1906.00873 [astro-ph.HE]

    Article  ADS  Google Scholar 

  16. Perlick, V., Tsupko, O.Y., Bisnovatyi-Kogan, G.S.: Phys. Rev. D 97(10), 104062 (2018). https://doi.org/10.1103/PhysRevD.97.104062. arXiv:1804.04898 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  17. Wei, S.W., Liu, Y.X.: JCAP 11, 063 (2013). https://doi.org/10.1088/1475-7516/2013/11/063. arXiv:1311.4251 [gr-qc]

    Article  ADS  Google Scholar 

  18. Wei, S.W., Liu, Y.X.: Eur. Phys. J. Plus 136(4), 436 (2021). https://doi.org/10.1140/epjp/s13360-021-01398-9. arXiv:2003.07769 [gr-qc]

    Article  Google Scholar 

  19. Vagnozzi, S., Roy, R., Tsai, Y.D., Visinelli, L., Afrin, M., Allahyari, A., Bambhaniya, P., Dey, D., Ghosh, S.G. Joshi, P.S., et al.: https://doi.org/10.1088/1361-6382/acd97b. arXiv:2205.07787 [gr-qc]

  20. Wang, M., Chen, S., Jing, J.: JCAP 10, 051 (2017). https://doi.org/10.1088/1475-7516/2017/10/051. arXiv:1707.09451 [gr-qc]

    Article  ADS  Google Scholar 

  21. Kuang, X.M., Övgün, A.: Annals Phys. 447, 169147 (2022). https://doi.org/10.1016/j.aop.2022.169147. arXiv:2205.11003 [gr-qc]

    Article  Google Scholar 

  22. Kuang, X.M., Tang, Z.Y., Wang, B., Wang, A.: Phys. Rev. D 106(6), 064012 (2022). https://doi.org/10.1103/PhysRevD.106.064012. arXiv:2206.05878 [gr-qc]

    Article  ADS  Google Scholar 

  23. Hu, S., Deng, C., Li, D., Wu, X., Liang, E.: Eur. Phys. J. C 82(10), 885 (2022). https://doi.org/10.1140/epjc/s10052-022-10868-y

    Article  ADS  Google Scholar 

  24. Hu, S., Deng, C., Guo, S., Wu, X., Liang, E.: Eur. Phys. J. C 83(3), 264 (2023). https://doi.org/10.1140/epjc/s10052-023-11411-3

    Article  ADS  Google Scholar 

  25. Wei, S.W., Liu, Y.X., Mann, R.B.: Phys. Rev. D 99(4), 041303 (2019). https://doi.org/10.1103/PhysRevD.99.041303. arXiv:1811.00047 [gr-qc]

    Article  ADS  Google Scholar 

  26. Wei, S.W., Zou, Y.C., Liu, Y.X., Mann, R.B.: JCAP 08, 030 (2019). https://doi.org/10.1088/1475-7516/2019/08/030. arXiv:1904.07710 [gr-qc]

    Article  ADS  Google Scholar 

  27. Wei, S.W., Zou, Y.C.: arXiv:2108.02415 [gr-qc]

  28. Omwoyo, E., Belich, H., Fabris, J.C., Velten, H.: Eur. Phys. J. C 82(5), 395 (2022). https://doi.org/10.1140/epjc/s10052-022-10361-6. arXiv:2112.14124 [gr-qc]

    Article  ADS  Google Scholar 

  29. Cao, W., Liu, W., Wu, X.: Phys. Rev. D 105(12), 124039 (2022). https://doi.org/10.1103/PhysRevD.105.124039. arXiv:2206.09518 [gr-qc]

    Article  ADS  Google Scholar 

  30. Toledo, J.M., Bezerra, V.B.: Gen. Relativ. Gravit. 52(4), 34 (2020). https://doi.org/10.1007/s10714-020-02683-1

    Article  ADS  Google Scholar 

  31. Sun, C., Liu, Y., Qian, W.L., Yue, R.: Chin. Phys. C 46(6), 065103 (2022). https://doi.org/10.1088/1674-1137/ac588c. arXiv:2201.01890 [gr-qc]

    Article  ADS  Google Scholar 

  32. Xu, Z., Wang, J.: Phys. Rev. D 95(6), 064015 (2017). https://doi.org/10.1103/PhysRevD.95.064015. arXiv:1609.02045 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  33. Heydari-Fard, M.: arXiv:2209.09103 [gr-qc]

  34. Rodrigues, M.E., Vieira, H.A.: Phys. Rev. D 106(8), 084015 (2022). https://doi.org/10.1103/PhysRevD.106.084015. arXiv:2210.06531 [gr-qc]

    Article  ADS  Google Scholar 

  35. Herscovich, E., Richarte, M.G.: Phys. Lett. B 689, 192–200 (2010). https://doi.org/10.1016/j.physletb.2010.04.065. arXiv:1004.3754 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  36. Fathi, M., Olivares, M., Villanueva, J.R.: Eur. Phys. J. Plus 138(1), 7 (2023). https://doi.org/10.1140/epjp/s13360-022-03538-1. arXiv:2207.04076 [gr-qc]

    Article  Google Scholar 

  37. Surya Shankar, R.: arXiv:2204.11253 [gr-qc]

  38. Mustafa, G., Atamurotov, F., Hussain, I., Shaymatov, S., Övgün, A.: Chin. Phys. C 46(12), 125107 (2022). https://doi.org/10.1088/1674-1137/ac917f. arXiv:2207.07608 [gr-qc]

    Article  ADS  Google Scholar 

  39. He, A., Tao, J., Xue, Y., Zhang, L.: Chin. Phys. C 46(6), 065102 (2022). https://doi.org/10.1088/1674-1137/ac56cf. arXiv:2109.13807 [gr-qc]

    Article  ADS  Google Scholar 

  40. Singh, B.P.: arXiv:2301.00956 [gr-qc]

  41. Atamurotov, F., Hussain, I., Mustafa, G., Jusufi, K.: Eur. Phys. J. C 82(9), 831 (2022). https://doi.org/10.1140/epjc/s10052-022-10782-3. arXiv:2209.01652 [gr-qc]

    Article  ADS  Google Scholar 

  42. Carter, B.: Phys. Rev. 174, 1559–1571 (1968). https://doi.org/10.1103/PhysRev.174.1559

    Article  ADS  Google Scholar 

  43. Rahaman, F., Singh, K.N., Shaikh, R., Manna, T., Aktar, S.: Class. Quantum Gravity 38(21), 215007 (2021). https://doi.org/10.1088/1361-6382/ac213b. arXiv:2108.09930 [gr-qc]

    Article  ADS  Google Scholar 

  44. Wang, Y., Sun, W., Liu, F., Wu, X.: Astrophys. J. Suppl. 254(1), 8 (2021). https://doi.org/10.3847/1538-4365/abf116. arXiv:2103.12272 [gr-qc]

    Article  ADS  Google Scholar 

  45. Yi, M., Wu, X.: Phys. Scr. 95(8), 085008 (2020). https://doi.org/10.1088/1402-4896/aba4c2

    Article  ADS  Google Scholar 

  46. Cunha, P.V.P., Herdeiro, C.A.R., Radu, E., Runarsson, H.F.: Int. J. Mod. Phys. D 25(09), 1641021 (2016). https://doi.org/10.1142/S0218271816410212. arXiv:1605.08293 (gr-qc)

    Article  ADS  Google Scholar 

  47. Wang, M., Chen, S., Jing, J.: arXiv:2208.10219 (gr-qc)

  48. Li, P.C., Guo, M., Chen, B.: Phys. Rev. D 101(8), 084041 (2020). https://doi.org/10.1103/PhysRevD.101.084041. arXiv:2001.04231 (gr-qc)

    Article  ADS  MathSciNet  Google Scholar 

  49. Craig Walker, R., Hardee, P.E., Davies, F.B., Ly, C., Junor, W., Astrophys. J.: 855(2), 128 (2018). https://doi.org/10.3847/1538-4357/aaafcc. arXiv:1802.06166 (astro-ph.HE)

Download references

Acknowledgements

The authors are very grateful to referees for useful suggestions. This research has been supported by the National Natural Science Foundation of China (Grant No. 11973020), and the Natural Science Foundation of Guangxi (Grant No. 2019GXNSFDA245019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, W., Liu, W. & Wu, X. Parameter constraints from shadows of Kerr–Newman-dS black holes with cloud strings and quintessence. Gen Relativ Gravit 55, 120 (2023). https://doi.org/10.1007/s10714-023-03169-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03169-6

Keywords

Navigation