Skip to main content
Log in

Compression Behavior of a Wood-Based Triangular Prism-Type Lattice Sandwich Structure

  • Published:
Mechanics of Composite Materials Aims and scope

Using the insertion-glue method, wood-based triangular prism-type lattice sandwich structures with a round birch rod tenons as the core, an epoxy resin as the adhesive, and plywood as the panels were prepared and analyzed under different multivariable conditions. The results of plane compression tests and a theoretical model used showed that the failure mode is mainly the shear failure of their core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. M. T. Munir, C. Belloncle, M. Irle, and M. Federighi, “Wood-based litter in poultry production: a review,” World Poultry Sci. J., 75, 5-16 (2019).

    Article  Google Scholar 

  2. J. K. Qin, T. T. Zheng, S. Li, Y. P. Cheng, Q. Y. Xu, G. Y. Ye, and Y. C. Hu, “Core configuration and panel reinforcement affect compression properties of wood‑based 2‑D straight column lattice truss sandwich structure,” Eur. J. Wood Prod., 77, 539-546 (2019).

    Article  Google Scholar 

  3. J. Giancaspro, P. N. Balaguru, and R. E. Lyon, “Use of inorganic polymer to improve the fire response of balsa sandwich structures,” J. Mater. Civ. Eng., 18, No. 3, 390-397 (2006).

    Article  CAS  Google Scholar 

  4. M. Ekenel, “Testing and acceptance criteria for fiber-reinforced composite grid connectors used in concrete sandwich panels,” J. Mater. Civ. Eng., 26, No. 6, 06014004 (2014).

  5. H. Mathieson, A. Fam, “Effect of internal ribs on fatigue performance of sandwich panels with GFRP skins and polyurethane foam core,” J. Mater. Civ. Eng., 27, No. 2, A4014005 (2015).

  6. S. Li, T. T. Zheng, Y. C. Hu, and B. Wang, “Flexural and energy absorption properties of natural-fiber reinforced composites with a novel fabrication technique,” Composite. Commun., 16, 124-131 (2019).

    Article  Google Scholar 

  7. V. S. Deshpande, M. F. Ashby, and N. A. Fleck, “Foam topology: bending versus stretching dominated architectures,” Acta. Materialia, 49, No. 6, 1035-1040 (2001).

    Article  CAS  Google Scholar 

  8. V. S. Deshpande, N. A. Fleck, and M. F. Ashby, “Effective properties of the octet-truss lattice material,” J. Mech. Phys. Solids., 49, No. 8, 1747-1769 (2001).

    Article  CAS  Google Scholar 

  9. W. Huang, Z. H. Fan, W. Zhang, J. Y. Liu, and W. Zhou, “Impulsive response of composite sandwich structure with tetrahedral truss core,” Compos. Sci. and Technol., 176, 17-28 (2019).

    Article  CAS  Google Scholar 

  10. S. H. Li, W. C. Jiang, X. L. Zhu, and X. F. Xie, “Effect of localized defects on mechanical and creep properties for pyramidal lattice truss panel structure by analytical, experimental and finite element methods,” Thin-Walled Structures, 170, 108531 (2022).

    Article  Google Scholar 

  11. Z. J. Zhang, B. C. Li, Y. J. Wang, W. Zhang, C. C. Yue, Q. C. Zhang, and F. Jin, “Elevated temperature compression behaviors of 3D printed hollow pyramidal lattice sandwich structure reinforced by truncated square honeycomb,” Compos. Struct., 286, 115307 (2022).

    Article  CAS  Google Scholar 

  12. B. Xue, Y. X. Peng, S. F. Ren, N. N. Liu, and Q. Zhang, “Investigation of impact resistance performance of pyramid lattice sandwich structure based on SPH-FEM,” Compos. Struct., 261, 113561 (2021).

    Article  Google Scholar 

  13. L. Zhang, S. Feih, S. Daynes, Y. Q. Wang, M. Y. Wang, J. Wei, and W. F. Lu, “Buckling optimization of Kagome lattice cores with free-form trusses,” Mater. Design, 145, 144-155 (2018).

    Article  Google Scholar 

  14. S.-H. Lee, K.-G. Lee, B.-K. Lee et al., “Evaluation of mechanical strength and bone regeneration ability of 3D printed kagome-structure scaffold using rabbit calvarial defect model,” Mater. Sci. Eng., 98, 949-959 (2019).

    Article  CAS  Google Scholar 

  15. G. Q. Zhang, L. Ma, B. Wang, and L. Z. Wu, “Mechanical behaviour of CFRP sandwich structures with tetrahedral lattice truss cores,” Composites, Part B, 43, 471-476 (2012).

    Article  CAS  Google Scholar 

  16. J. Xiong, M. Zhang, and A. Stocchi et al., “Mechanical behaviors of carbon fiber composite sandwich columns with three dimensional honeycomb cores under in-plane compression,” Composites, Part B, 60, 350-358 (2014).

    Article  CAS  Google Scholar 

  17. X. D. Li, F. L. Cong, Y. W. Zhang, Z. Q. Qin, S. Wang, and J. He, “Effect of high-low temperature on the compressive and shear performances of composite sandwich panels with pyramidal lattice truss cores,” Compos. Struct., 292, 115675 (2022).

    Article  CAS  Google Scholar 

  18. N. Jin, F. C. Wang, Y. W. Wang, B. W. Zhang, H. W. Cheng, and H. M. Zhang, “Effect of structural parameters on mechanical properties of Pyramidal Kagome lattice material under impact loading,” Int. J. Impact Eng., 132, 10331 (2019).

    Article  Google Scholar 

  19. L. X. Zou, T. T. Zheng, S. Li, X. Zhao, L. F. Wang, and Y. C. Hu, “Compression behaviour of the wood‑based X‑type lattice sandwich structure,” Eur. J. Wood Prod., 79, 139-150 (2021).

    Article  CAS  Google Scholar 

  20. L. F. Wang, Y. C. Hu, X. C. Zhang, S. Li, S. G. Li, and H. F. Zhang, “Design and compressive behavior of a wood‑based pyramidal lattice core sandwich structure,” Eur. J. Wood Prod., 78, 123-134 (2020).

    Article  Google Scholar 

  21. M. M. Jin, Y. C. Hu, and B. Wang, “Compressive and bending behaviours of wood-based two-dimensional lattice truss core sandwich structures,” Compos. Struct., 124, 337-344 (2015).

    Article  Google Scholar 

  22. T. T. Zheng, Y. P. Cheng, S. Li, Y. Zhang, and Y. C. Hu, “Mechanical properties of the wood-based X-type lattice sandwich structure,” BioResources, 15, 1927-1944 (2020a).

    Article  CAS  Google Scholar 

  23. T. T. Zheng, H. Z. Yan, S. Li, Y. P. Cheng, L. X. Zou, and Y. C. Hu, “Compressive behavior and failure modes of the wood-based double X-type lattice sandwich structure,” J. Build. Eng., 30, 101176 (2020b).

    Article  Google Scholar 

  24. S. Li, J. K. Qin, C. C. Li, Y. X. Feng, X. Zhao, and Y. C. Hu, “Optimization and compressive behavior of composite 2-D lattice structure,” Mech. Adv. Mater. Struct., 27, No. 14, 1213-1222(2018).

    Article  Google Scholar 

  25. U. Meekum and W. Wangkheeree, “Manufacturing of lightweight sandwich structure engineered wood reinforced with fiber glass: selection of core materials using hybridized natural/engineered fibers,” BioResources, 11, No. 3, 7608-7623 (2016).

    Article  CAS  Google Scholar 

  26. J. H. Li, J. F. Hunt, S. Q. Gong, and Z. Y. Cai, “High strength wood-based sandwich panels reinforced with fiberglass and foam,” BioResources, 9, No. 2, 1898-1913 (2014).

    Article  CAS  Google Scholar 

  27. Z. X. Fan, G. Y. Ye, S. Li, Z. Y. Bai, Q. W. Yong, Y. H. Zhang, and Y. C. Hu, “Compression performance and failure mechanism of honeycomb structures fabricated with reinforced wood,” Structures, 48, 1868-1882 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (32171692) and the Fundamental Research Fund for the Central Universities (2572020DR13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Hu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Hu, Y. Compression Behavior of a Wood-Based Triangular Prism-Type Lattice Sandwich Structure. Mech Compos Mater 59, 989–1000 (2023). https://doi.org/10.1007/s11029-023-10147-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-023-10147-1

Keywords

Navigation