Skip to main content
Log in

Silica-based nanoarchitecture for an optimal combination of photothermal and chemodynamic therapy functions of Cu2−xS cores with red emitting carbon dots

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

This study introduces multifunctional silica nanoparticles that exhibit both high photothermal and chemodynamic therapeutic activities, in addition to luminescence. The activity of the silica nanoparticles is derived from their plasmonic properties, which are a result of infusing the silica nanoparticles with multiple Cu2−xS cores. This infusion process is facilitated by a recoating of the silica nanoparticles with a cationic surfactant. The key factors that enable the internal incorporation of the Cu2−xS cores and the external deposition of red-emitting carbon dots are identified. The Cu2−xS cores within the silica nanoparticles exhibit both self-boosting generation of reactive oxygen species and high photothermal conversion efficacy, which are essential for photothermal and chemodynamic activities. The silica nanoparticles’ small size (no more than 70 nm) and high colloidal stability are prerequisites for their cell internalization. The internalization of the red-emitting silica nanoparticles within cells is visualized using fluorescence microscopy techniques. The chemodynamic activity of the silica nanoparticles is associated with their dark cytotoxicity, and the mechanisms of cell death are evaluated using an apoptotic assay. The photothermal activity of the silica nanoparticles is demonstrated by significant cell death under near-infrared (1064 nm) irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim M, Lee J H. Plasmonic photothermal nanoparticles for niomedical applications. Advancement of Science, 2019, 6: 1900471

    Google Scholar 

  2. Nikam A N, Pandey A, Fernandes G, Kulkarni S, Mutalik S P, Padya B S, George S D, Mutalik S. Copper sulphide based heterogeneous nanoplatforms for multimodal therapy and imaging of cancer: recent advances and toxicological perspectives. Coordination Chemistry Reviews, 2020, 419: 213356

    Article  CAS  Google Scholar 

  3. Sun H, Zhang Y, Chen S, Wang R, Chen Q, Li J, Luo Y, Wang X, Chen H. Photothermal Fenton nanocatalysts for synergetic cancer therapy in the second near-infrared window. ACS Applied Materials & Interfaces, 2020, 12(27): 30145–30154

    Article  CAS  Google Scholar 

  4. Goel S, Chen F, Cai W. Synthesis and biomedical applications of copper sulfide nanoparticles: from sensors to theranostics. Small, 2014, 10(4): 631–645

    Article  CAS  PubMed  Google Scholar 

  5. Tian Q, Jiang F, Zou R, Liu Q, Chen Z, Zhu M, Yang S, Wang J, Wang J, Hu J. Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano, 2011, 5(12): 9761–9771

    Article  CAS  PubMed  Google Scholar 

  6. Marin R, Skripka A, Besteiro L V, Benayas A, Wang Z, Govorov A O, Canton P, Vetrone F. Highly efficient copper sulfide-based near-infrared photothermal agents: exploring the limits of macroscopic heat conversion. Small, 2018, 14(49): 1803282

    Article  Google Scholar 

  7. Li Y, Lu W, Huang Q, Li C, Chen W. Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine, 2010, 5(8): 1161–1171

    Article  CAS  PubMed  Google Scholar 

  8. Yan C, Tian Q, Yang S. Recent advances in the rational design of copper chalcogenide to enhance the photothermal conversion efficiency for the photothermal ablation of cancer cells. RSC Advances, 2017, 7(60): 37887–37897

    Article  CAS  Google Scholar 

  9. Li S L, Chu X, Dong H L, Hou H Y, Liu Y. Recent advances in augmenting Fenton chemistry of nanoplatforms for enhanced chemodynamic therapy. Coordination Chemistry Reviews, 2023, 479: 215004

    Article  CAS  Google Scholar 

  10. Behzadi S, Serpooshan V, Tao W, Hamaly M A, Alkawareek M Y, Dreaden E C, Brown D, Alkilany A M, Farokhzad O C, Mahmoudi M. Cellular uptake of nanoparticles: journey inside the cell. Chemical Society Reviews, 2017, 46(14): 4218–4244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu M, Yang G, Bi H, Xu J, Dong S, Jia T, Wang Z, Zhao R, Sun Q, Gai S, et al. An intelligent nanoplatform for imaging-guided photodynamic/photothermal/chemo-therapy based on upconversion nanoparticles and CuS integrated black phosphorus. Chemical Engineering Journal, 2020, 382: 122822

    Article  CAS  Google Scholar 

  12. Wang J, Shah Z H, Zhang S, Lu R. Silica-based nanocomposites via reverse microemulsions: classifications, preparations, and applications. Nanoscale, 2014, 6(9): 4418–4437

    Article  CAS  PubMed  Google Scholar 

  13. Wei W, Wei M, Liu S. Silica nanoparticles as a carrier for signal amplification. Reviews in Analytical Chemistry, 2012, 31(3–4): 163–176

    Google Scholar 

  14. Yu M, Zhao Z. Plasmon-enhanced up-conversion luminescence and oxygen vacancy defect-induced yellow light in annealed Cu8S5@SiO2@Er2O3 nanocomposites. Journal of Luminescence, 2020, 225: 117361

    Article  CAS  Google Scholar 

  15. Yu M, Tang P, Zhang Q, Zhao Z, Huang S. Plasmon-enhanced up-conversion luminescence in multiple Cu2−xS@SiO2-embedded Er(OH)CO3 composites. Journal of Alloys and Compounds, 2021, 853:156906

    Article  CAS  Google Scholar 

  16. Liu K, Liu K, Liu J, Ren Q, Zhao Z, Wu X, Li D, Yuan F, Ye K, Li B. Copper chalcogenide materials as photothermal agents for cancer treatment. Nanoscale, 2020, 12(5): 2902–2913

    Article  CAS  PubMed  Google Scholar 

  17. Wang L, Ma X, Cai K, Li X. Morphological effect of copper sulfide nanoparticles on their near infrared laser activated photothermal and photodynamic performance. Materials Research Express, 2019, 6(10): 105406

    Article  CAS  Google Scholar 

  18. Mutalik C, Okoro G, Krisnawati D I, Jazidie A, Rahmawati E Q, Rahayu D, Hsu W T, Kuo T R. Copper sulfide with morphology-dependent photodynamic and photothermal antibacterial activities. Journal of Colloid and Interface Science, 2022, 607: 1825–1835

    Article  CAS  PubMed  Google Scholar 

  19. Dimitriev O, Slominskii Y, Giancaspro M, Rizzi F, Depalo N, Fanizza E, Yoshida T. Giancaspro, Rizzi F, Depalo N, Fanizza E, Yoshida T. Assembling near-infrared dye on the surface of near-infrared silica-coated copper sulphide plasmonic nanoparticles. Nanomaterials, 2023, 13(3): 510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fanizza E, Mastrogiacomo R, Pugliese O, Guglielmelli A, Sio L D, Castaldo R, Scavo M P, Giancaspro M, Rizzi F, Gentile G, et al. NIR-absorbing mesoporous silica-coated copper sulphide nanostructures for light-to-thermal energy conversion. Nanomaterials, 2022, 12(15): 2545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Luo B, Huang X, Ye Y, Cai J, Feng Y, Cai X, Wang X. CuS NP-based nanocomposite with photothermal and augmented-photodynamic activity for magnetic resonance imaging-guided tumor synergistic therapy. Journal of Inorganic Chemistry, 2022, 235: 111940

    CAS  Google Scholar 

  22. Wang Y, An L, Lin J, Tian Q, Yang S. A hollow Cu9S8 theranostic nanoplatform based on a combination of increased active sites and photothermal performance in enhanced chemodynamic therapy. Chemical Engineering Journal, 2020, 385: 123925

    Article  CAS  Google Scholar 

  23. Fedorenko S, Stepanov A, Bochkova O, Kholin K, Dovjenko A, Zairov R, Nizameev I, Gerasimova T, Strelnik I, Voloshina A, et al. Tailoring of silica nanoarchitecture to optimize Cu2−xS based image-guided chemodynamic therapy agent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626: 126996

    Article  CAS  Google Scholar 

  24. Fedorenko S, Farvaeva D, Stepanov A, Bochkova O, Kholin K, Nizameev I, Drobyshev S, Gerasimova T, Voloshina A, Fanizza E, et al. Tricks for organic-capped Cu2−xS nanoparticles encapsulation into silica nanocomposites co-doped with red emitting luminophore for NIR activated-photothermal/chemodynamic therapy. Journal of Photochemistry and Photobiology A Chemistry, 2022, 433: 114187

    Article  CAS  Google Scholar 

  25. Ren G, Yu L, Zhu B, Tang M, Chai F, Wang C, Su Z. Orange emissive carbon dots for colorimetric and fluorescent sensing of 2,4,6-trinitrophenol by fluorescence conversion. RSC Advances, 2018, 8(29): 16095–16102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Davydov N, Mustafina A, Burilov V, Zvereva E, Katsyuba S, Vagapova L, Konovalov A, Antipin I. Complex formation of d-metal ions at the interface of TbIII -doped silica nanoparticles as a basis of substrate-responsive TbIII-centered luminescence. ChemPhysChem, 2012, 13(14): 3357–3364

    Article  CAS  PubMed  Google Scholar 

  27. Donahue N D, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Advanced Drug Delivery Reviews, 2019, 143: 68–96

    Article  CAS  PubMed  Google Scholar 

  28. Manzanares D, Ceña V. Endocytosis: the nanoparticle and submicron nanocompounds gateway into the cell. Pharmaceutics, 2020, 12(4): 371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Augustine R, Hasan A, Primavera R, Wilson R J, Thakor A S, Kevadiya B D. Cellular uptake and retention of nanoparticles: insights on particle properties and interaction with cellular components. Materials Today. Communications, 2020, 25: 101692

    Article  CAS  Google Scholar 

  30. Fedorenko S V, Mustafina A R, Mukhametshina A R, Jilkin M E, Mukhametzyanov T A, Solovieva A O, Pozmogova T N, Shestopalova L V, Shestopalov M A, Kholin K V, et al. Cellular imaging by green luminescence of Tb(III)-doped aminomodified silica nanoparticles. Materials Science and Engineering A, 2017, 76: 551–558

    CAS  Google Scholar 

  31. Elistratova J, Mukhametshina A, Kholin K, Nizameev I, Mikhailov M, Sokolov M, Khairullin R, Miftakhova R, Shammas G, Kadirov M, et al. Interfacial uploading of luminescent hexamolybdenum cluster units onto amino-decorated silica nanoparticles as new design of nanomaterial for cellular imaging and photodynamic therapy. Journal of Colloid and Interface Science, 2019, 538: 387–396

    Article  CAS  PubMed  Google Scholar 

  32. de la Torre C, Gavara R, Garcia-Fernandez A, Mikhaylov M, Sokolov M N, Miravet J F, Sancenon F, Martinez-Manez R, Galindo F. Enhancement of photoactivity and cellular uptake of (Bu4N)2[Mo6I8(CH3COO)6] complex by loading on porous MCM-41 support. Photodynamic studies as an anticancer agent. Biomaterials Advances, 2022, 140: 213057

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Z, Zhu H, Peng N, Song J, Sun R, Wang J, Zhu F, Wang Y. Red emissive carbon dots-based probe for rapid identification and continuous tracking of Gram-positive bacteria in tumor cells. Materials Letters, 2023, 341: 134233

    Article  CAS  Google Scholar 

  34. Wang X, Cao Y, Hu X, Cai L, Wang H, Fang G, Wang S. A novel fluorescent biomimetic sensor based on cerium, nitrogen co-doped carbon quantum dots embedded in cobalt-based metal organic framework@molecularly imprinted polymer for selective and sensitive detection of oxytetracycline. Microchemical Journal, 2023, 190: 108606

    Article  CAS  Google Scholar 

  35. Luo F, Zhu M, Liu Y, Sun J, Gao F. Ratiometric and visual determination of copper ions with fluorescent nanohybrids of semiconducting polymer nanoparticles and carbon dots. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2023, 295: 122574

    Article  CAS  Google Scholar 

  36. Wang Y, Wu R, Zhang Y, Cheng S, Zhang Y. High quantum yield nitrogen doped carbon dots for Ag+ sensing and bioimaging. Journal of Molecular Structure, 2023, 1283: 135212

    Article  CAS  Google Scholar 

  37. Sajwan R K, Solanki P R. Gold@carbon quantum dots nanocomposites based two-in-one sensor: a novel approach for sensitive detection of aminoglycosides antibiotics in food samples. Food Chemistry, 2023, 415: 135590

    Article  CAS  PubMed  Google Scholar 

  38. Bochkova O, Dovjenko A, Zairov R, Kholin K, Biktimirova R, Fedorenko S, Nizameev I, Laskin A, Voloshina A, Lyubina A, et al. Silica-supported assemblage of CuII ions with carbon dots for self-boosting and glutathione-induced ROS generation. Coatings, 2022, 12(1): 97

    Article  CAS  Google Scholar 

  39. Yu Y, Song M, Chen C, Du Y, Li C, Han Y, Yan F, Shi Z, Feng S. Bortezomib-encapsulated CuS/carbon dot nanocomposites for enhanced photothermal therapy via stabilization of polyubiquitinated substrates in the proteasomal degradation pathway. ACS Nano, 2020, 14(8): 10688–10703

    Article  CAS  PubMed  Google Scholar 

  40. Roper D K, Ahn W, Hoepfner M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. Journal of Physical Chemistry C, 2007, 111(9): 3636–3641

    Article  CAS  Google Scholar 

  41. Ain N, Abdul Nasir J, Khan Z, Butler I S, Rehman Z. Copper sulfide nanostructures: synthesis and biological applications. RSC Advances, 2022, 12(12): 7550–7567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang L, Pan H, Li Y, Li F, Huang X. Constructing Cu7S4@SiO2/DOX multifunctional nanoplatforms for synergistic photothermal-chemotherapy on melanoma tumors. Frontiers in Bioengineering and Biotechnology Sec. Biomaterials, 2020, 8: 579439

    Google Scholar 

  43. An N, Wang Y, Li M, Lin H, Qu F. The synthesis of core-shell Cu9S5@mSiO2-ICG@PEG-LA for photothermal and photodynamic therapy. New Journal of Chemistry, 2018, 42(22): 18318–18327

    Article  CAS  Google Scholar 

  44. Tang Z, Liu Y, He M, Bu W. Chemodynamic therapy: tumour microenvironment mediated Fenton and Fenton-like reactions. Angewandte Chemie International Edition, 2019, 58(4): 946–956

    Article  CAS  PubMed  Google Scholar 

  45. Gao F, Liu J, Gong P, Yang Y, Jiang Y. Carbon dots as potential antioxidants for the scavenging of multi-reactive oxygen and nitrogen species. Chemical Engineering Journal, 2023, 462: 142338

    Article  CAS  Google Scholar 

  46. Zhang K, Meng X, Yang Z, Dong H, Zhang X. Enhanced cancer therapy by hypoxia-responsive copper metal-organic frameworks nanosystem. Biomaterials, 2020, 258: 120278

    Article  CAS  PubMed  Google Scholar 

  47. Komarnicka U K, Pucelik B, Wojtala D, Lesiów M K, Stochel G, Kyziol A. Evaluation of anticancer activity in vitro of a stable copper(I) complex with phosphine-peptide conjugate. Scientific Reports, 2021, 11(1): 23943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tsvetkov T, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler Ryan D, Eaton J K, Frenkel E, Kocak M, Corsello S M, Lutsenko S, Kanarek N, Santagata S, Golub T R. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science, 2022, 375(6586): 1254–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. McBride H M, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Current Biology, 2006, 16(14): R551–R560

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The reported study was funded by RFBR and CNR, project number 20-53-7802. Authors gratefully acknowledge to Assigned Spectral-Analytical Center of FRC Kazan Scientific Center of RAS for providing necessary facilities to carry out physical-chemical measurements. The authors thanks to Interdisciplinary Center for Analytical Microscopy at KFU for assistance with the confocal microscopy experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Stepanov.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Electronic supplementary material

11705_2023_2362_MOESM1_ESM.pdf

Silica-based nanoarchitecture for an optimal combination of photothermal and chemodynamic therapy functions of Cu2−xS cores with red emitting carbon dots

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanov, A., Fedorenko, S., Kholin, K. et al. Silica-based nanoarchitecture for an optimal combination of photothermal and chemodynamic therapy functions of Cu2−xS cores with red emitting carbon dots. Front. Chem. Sci. Eng. 17, 2144–2155 (2023). https://doi.org/10.1007/s11705-023-2362-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-023-2362-4

Keywords

Navigation