Skip to main content
Log in

Geodesically completing regular black holes by the Simpson–Visser method

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Regular black holes are often geodesically incomplete when their extensions to negative values of the radial coordinate are considered. Here, we propose to use the Simpson–Visser method of regularising a singular spacetime, and apply it to a regular solution that is geodesically incomplete, to construct a geodesically complete regular solution. Our method is generic, and can be used to cure geodesic incompleteness in any spherically symmetric static regular solution, so that the resulting solution is symmetric in the radial coordinate. As an example, we illustrate this procedure using a regular black hole solution with an asymptotic Minkowski core. We study the structure of the resulting metric, and show that it can represent a wormhole or a regular black hole with a single or double horizon per side of the throat. Further, we construct a source Lagrangian for which the geodesically complete spacetime is an exact solution of the Einstein equations, and show that this consists of a phantom scalar field and a nonlinear electromagnetic field. Finally, gravitational lensing properties of the geodesically complete spacetime are briefly studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The SV method has gained a lot of recent attention. For a non-exhaustive list of recent works, see [20,21,22,23,24,25,26,27,28,29,30,31,32,33].

  2. To the best of our knowledge, the phenomenological version of this metric was first proposed in [11], along with the rotating version in [12]. However, the full significance of this metric, from carefully chosen first principles was elucidated in [10, 34, 35].

  3. Note that, in the following we shall choose the parameter values in such a way that this equation has only two real roots.

  4. Since the metric extension is symmetric about \(r=0\) there are two horizons for negative values of r, at \(-r_{+}\) and \(-r_{-}\) respectively, as well.

  5. Notice that though sign of \(\rho +p_r\) depends on the metric function \({\mathcal {A}}(r)\), once we have made the above choice of the scalar field, the sign of the function h(r) is determined only by the areal radius \({\mathcal {B}}(r)\) and its second derivative.

  6. For the importance of the photon sphere and its role in gravitational lensing, see [38,39,40,41, 44].

References

  1. Nicolini, P.: Int. J. Mod. Phys. A 24, 1229–1308 (2009)

    Article  ADS  Google Scholar 

  2. Ansoldi, S.: arXiv:0802.0330 [gr-qc]

  3. Maeda, H.: JHEP 11, 108 (2022)

    Article  ADS  Google Scholar 

  4. Sebastiani, L., Zerbini, S.: arXiv:2206.03814 [gr-qc]

  5. Ai, W.Y.: Phys. Rev. D 104(4), 044064 (2021)

    Article  ADS  Google Scholar 

  6. Torres, R.: arXiv:2208.12713 [gr-qc]

  7. Hawking, S.W., Penrose, R.: Proc. R. Soc. Lond. A 314, 529–548 (1970)

    Article  ADS  Google Scholar 

  8. Zhou, T., Modesto, L.: Phys. Rev. D 107(4), 044016 (2023)

    Article  ADS  Google Scholar 

  9. Hayward, S.A.: Phys. Rev. Lett. 96, 031103 (2006)

    Article  ADS  Google Scholar 

  10. Simpson, A., Visser, M.: Universe 6(1), 8 (2019)

    Article  ADS  Google Scholar 

  11. Culetu, H.: arXiv:1305.5964 [gr-qc]

  12. Ghosh, S.G.: Eur. Phys. J. C 75(11), 532 (2015)

    Article  ADS  Google Scholar 

  13. Simpson, A., Visser, M.: JCAP 02, 042 (2019)

    Article  ADS  Google Scholar 

  14. Simpson, A., Martin-Moruno, P., Viser, M.: Class. Quant. Grav. 36, 145007 (2019)

    Article  ADS  Google Scholar 

  15. Franzin, E., Liberati, S., Mazza, J., Simpson, A., Visser, M.: JCAP 07, 036 (2021)

    Article  ADS  Google Scholar 

  16. Mazza, J., Franzin, E., Liberati, S.: JCAP 04, 082 (2021)

    Article  ADS  Google Scholar 

  17. Shaikh, R., Pal, K., Pal, K., Sarkar, T.: Mon. Not. R. Astron. Soc. 506, 1229–1236 (2021)

    Article  ADS  Google Scholar 

  18. Lima, H.C.D., Junior, L.C.B., Crispino, P.V.P., Cunha, C.A.R., Herdeiro: Phys. Rev. D 103(8), 084040 (2021)

    Article  ADS  Google Scholar 

  19. Bronnikov, K.A., Walia, R.K.: Phys. Rev. D 105(4), 044039 (2022)

    Article  ADS  Google Scholar 

  20. Ye, X., Wang, C.H., Wei, S.W.: arXiv:2306.12097 [gr-qc]

  21. Bronnikov, K.A., Rodrigues, M.E., Silva, M.V.D.S.: arXiv:2305.19296 [gr-qc]

  22. Pal, K., Pal, K., Shaikh, R., Sarkar, T.: arXiv:2305.07518 [gr-qc]

  23. Chowdhuri, A., Ghosh, S., Bhattacharyya, A.: Front. Phys. 11, 1113909 (2023)

    Article  Google Scholar 

  24. Chataignier, L., Kamenshchik, A.Y., Tronconi, A., Venturi, G.: Phys. Rev. D 107(2), 023508 (2023)

    Article  ADS  Google Scholar 

  25. Zhang, J., Xie, Y.: Eur. Phys. J. C 82(5), 471 (2022)

    Article  ADS  Google Scholar 

  26. Yang, Y., Liu, D., Övgün, A., Long, Z.W., Xu, Z.: arXiv:2205.07530 [gr-qc]

  27. Pal, K., Pal, K., Sarkar, T.: Universe 8(4), 197 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  28. Fitkevich, M.: Phys. Rev. D 105(10), 106027 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  29. Ghosh, S., Bhattacharyya, A.: JCAP 11, 006 (2022)

    Article  ADS  Google Scholar 

  30. Fontana, M., Rinaldi, M.: arXiv:2302.08804 [gr-qc]

  31. Pal, K., Pal, K., Sarkar, T.: Universe 8(4), 197 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  32. Barrientos, J., Cisterna, A., Mora, N., Viganò, A.: Phys. Rev. D 106(2), 024038 (2022)

    Article  ADS  Google Scholar 

  33. Junior, E.L.B., Rodrigues, M.E.: Gen. Relativ. Gravit. 55(1), 8 (2023)

    Article  ADS  Google Scholar 

  34. Simpson, A., Visser, M.: JCAP 03(03), 011 (2022)

    Article  ADS  Google Scholar 

  35. Simpson, A., Visser, M.: Phys. Rev. D 105(6), 064065 (2022)

    Article  ADS  Google Scholar 

  36. Bronnikov, K.A.: Phys. Rev. D 106(6), 064029 (2022)

    Article  ADS  Google Scholar 

  37. Pal, K., Pal, K., Roy, P., Sarkar, T.: Eur. Phys. J. C 83(5), 397 (2023)

    Article  ADS  Google Scholar 

  38. Adler, S.L., Virbhadra, K.S.: Gen. Relativ. Gravit. 54(8), 93 (2022)

    Article  ADS  Google Scholar 

  39. Virbhadra, K.S., Ellis, G.F.R.: Phys. Rev. D 62, 084003 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  40. Virbhadra, K.S., Ellis, G.F.R.: Phys. Rev. D 65, 103004 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  41. Virbhadra, K.S.: Phys. Rev. D 79, 083004 (2009)

    Article  ADS  Google Scholar 

  42. Shaikh, R., Banerjee, P., Paul, S., Sarkar, T.: JCAP 07, 028 (2019)

    Article  ADS  Google Scholar 

  43. Shaikh, R., Banerjee, P., Paul, S., Sarkar, T.: Phys. Lett. B 789, 270 (2019)

    Article  ADS  Google Scholar 

  44. Claudel, C.M., Virbhadra, K.S., Ellis, G.F.R.: J. Math. Phys. 42, 818–838 (2001)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Bidyut Dey and Rajibul Shaikh for discussions and help, and Tian Zhou for a useful correspondence. We also thank the anonymous referee for various constructive suggestions, which helped to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuntal Pal.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, K., Pal, K. & Sarkar, T. Geodesically completing regular black holes by the Simpson–Visser method. Gen Relativ Gravit 55, 121 (2023). https://doi.org/10.1007/s10714-023-03168-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03168-7

Keywords

Navigation