Skip to main content

Advertisement

Log in

Development, Characterization, and Ex Vivo Permeation Assessment of Diclofenac Diethylamine Deep Eutectic Systems Across Human Skin

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

The primary aim of this study is to introduce Therapeutic Deep Eutectic Systems (THEDES) as a novel, green, and biocompatible solvent system for the delivery of diclofenac diethylamine (DDEA), a non-steroidal anti-inflammatory drug. The research question focuses on whether THEDES could significantly enhance the solubility and release kinetics of DDEA compared to conventional solvents.

Methods

The THEDES formulation comprises capric acid, menthol, and Gelucire® 33/01 in varying ratios. Techniques such as Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), rheology measurement, and contact angle tests were employed to characterize and investigate the drug solubilization process. Ex vivo permeation studies using Franz diffusion cells and human skin were conducted to assess drug release kinetics.

Results

The developed THEDES demonstrated unique molecular interactions and interfacial properties, with glass transition temperatures below − 50 °C and a broad spectrum of endothermic melting points, indicating excellent phase stability. The solubility of DDEA in THEDES was approximately 101 mg/ml, which is a tenfold and threefold increase compared to solvents like dimethyl sulfoxide and ethanol, respectively. Enhanced drug release kinetics were observed when compared with Voltaren® Emulgel, a commercial formulation. Histopathological evaluations indicated no signs of skin erythema, inflammation, or erosion, confirming the biocompatibility of the formulation.

Conclusion

THEDES emerges as a potent, green, biocompatible solvent system for efficiently delivering DDEA. It exhibits superior solubilization capacities and favorable release kinetics, coupled with high biocompatibility, offering significant advantages over traditional solvent systems for drug delivery applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Verhoeven F, Totoson P, Marie C, Prigent-Tessier A, Wendling D, Tournier-Nappey M, Prati C, Demougeot C. Diclofenac but not celecoxib improves endothelial function in rheumatoid arthritis: A study in adjuvant-induced arthritis. Atherosclerosis. 2017;266:136–44. https://doi.org/10.1016/j.atherosclerosis.2017.09.033.

    Article  CAS  PubMed  Google Scholar 

  2. Wongrakpanich S, Wongrakpanich A, Melhado K, Rangaswami J. A Comprehensive Review of Non-Steroidal Anti-Inflammatory Drug Use in The Elderly. Aging and Disease. 2018;9:143–150. https://doi.org/10.14336/ad.2017.0306.

  3. Tielemans MM, Jaspers Focks J, van Rossum LG, Eikendal T, Jansen JB, Laheij RJ, van Oijen MG. Gastrointestinal symptoms are still prevalent and negatively impact health-related quality of life: a large cross-sectional population based study in The Netherlands. PLoS ONE. 2013;8: e69876. https://doi.org/10.1371/journal.pone.0069876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang M, Fang L. Percutaneous absorption of diclofenac acid and its salts from emulgel. Asian J Pharm Sci. 2008;3:131–41. https://doi.org/10.1016/0378-5173(85)90149-8.

    Article  Google Scholar 

  5. Jaber N, Al-Akayleh F, Abdel-Rahem RA, Al-Remawi M. Characterization ex vivo skin permeation and pharmacological studies of ibuprofen lysinate-chitosan-gold nanoparticles. J Drug Deliv. 2021;62: 102399. https://doi.org/10.1016/j.jddst.2021.102399.

    Article  CAS  Google Scholar 

  6. Lu Y, Fan L, Yang L-Y, Huang F, Ouyang X-K. PEI-modified core-shell/bead-like amino silica enhanced poly (vinyl alcohol)/chitosan for diclofenac sodium efficient adsorption. Carbohydr Polym. 2020;229:115459. https://doi.org/10.1016/j.carbpol.2019.115459.

  7. Hajjar B, Zier K-I, Khalid N, Azarmi S, Löbenberg R. Evaluation of a microemulsion-based gel formulation for topical drug delivery of diclofenac sodium. J Pharm Investig. 2018;48:351–62. https://doi.org/10.1007/s40005-017-0327-7.

    Article  CAS  Google Scholar 

  8. Pedro SN, Mendes MSM, Neves BM, Almeida IF, Costa P, Correia-Sá I, Vilela C, Freire MG, Silvestre AJD, Freire CSR. Deep Eutectic Solvent Formulations and Alginate-Based Hydrogels as a New Partnership for the Transdermal Administration of Anti-Inflammatory Drugs. Pharmaceutics. 2022. [Epub ahead of print] https://doi.org/10.3390/pharmaceutics14040827.

  9. Jesus AR, Meneses L, Duarte ARC, Paiva A. Natural deep eutectic systems, an emerging class of cryoprotectant agents. Cryobiology. 2021;101:95–104. https://doi.org/10.1016/j.cryobiol.2021.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Earle MJ, Seddon KR. Ionic liquids. Green solvents for the future. Pure Appl Chem. 2000;72:1391–1398. https://doi.org/10.1351/pac200072071391.

  11. Al-Akayleh F, Khalid RM, Hawash D, Al-Kaissi E, Al-Adham ISI, Al-Muhtaseb N, Jaber N, Al-Remawi M, Collier PJ. Antimicrobial potential of natural deep eutectic solvents. Lett Appl Microbiol. 2022;75:607–15. https://doi.org/10.1111/lam.13699.

    Article  CAS  PubMed  Google Scholar 

  12. Al-Akayleh F, Adwan S, Khanfar M, Idkaidek N, Al-Remawi M. A Novel Eutectic-Based Transdermal Delivery System for Risperidone. AAPS PharmSciTech. 2020;22:4. https://doi.org/10.1208/s12249-020-01844-4.

    Article  CAS  PubMed  Google Scholar 

  13. Daadoue S, Al-Remawi MD, Al-Mawla L, Idkaidek NM, Khalid RM, Al-Akayleh F. Deep Eutectic Liquid as Transdermal Delivery Vehicle of Risperidone. J Mol Liq. 2021. https://doi.org/10.1016/j.molliq.2021.117347.

    Article  Google Scholar 

  14. Al-Akayleh F, Mohammed Ali HH, Ghareeb MM, Al-Remawi M. Therapeutic deep eutectic system of capric acid and menthol: Characterization and pharmaceutical application. J Drug Deliv Sci Technol. 2019;53: 101159. https://doi.org/10.1016/j.jddst.2019.101159.

    Article  CAS  Google Scholar 

  15. Ali HH, Ghareeb MM, Al-Remawi M, Al-Akayleh FT. New insight into single phase formation of capric acid/menthol eutectic mixtures by Fourier-transform infrared spectroscopy and differential scanning calorimetry. Trop J Pharm Res. 2020;19:361–9. https://doi.org/10.4314/tjpr.v19i2.19.

    Article  CAS  Google Scholar 

  16. Luhaibi DK, Ali HHM, Al-Ani I, Shalan N, Al-Akayleh F, Al-Remawi M, Nasereddin J, Qinna NA, Al-Adham I, Khanfar M. The Formulation and Evaluation of Deep Eutectic Vehicles for the Topical Delivery of Azelaic Acid for Acne Treatment. Molecules. 2023;28:6927. https://doi.org/10.3390/molecules28196927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alkhawaja B, Al-Akayleh F, Al-Khateeb A, Nasereddin J, Ghanim BY, Bolhuis A, Qinna NA. Deep Eutectic Liquids as a Topical Vehicle for Tadalafil: Characterisation and Potential Wound Healing and Antimicrobial Activity. Molecules. 2023;28(5):2402.‏ https://doi.org/10.3390/molecules28052402.

  18. Kang L, Jun HW, McCall JW. Physicochemical studies of lidocaine–menthol binary systems for enhanced membrane transport. Int J Pharm. 2000;206:35–42. https://doi.org/10.1016/S0378-5173(00)00505-6.

    Article  CAS  PubMed  Google Scholar 

  19. Kaplun-Frischoff Y, Touitou E. Testosterone Skin Permeation Enhancement by Menthol through Formation of Eutectic with Drug and Interaction with Skin Lipids. J Pharm Sci. 1997;86:1394–9. https://doi.org/10.1021/js9701465.

    Article  CAS  PubMed  Google Scholar 

  20. Stott PW, Williams AC, Barry BW. Transdermal delivery from eutectic systems: enhanced permeation of a model drug, ibuprofen. J Control Release. 1998;50:297–308. https://doi.org/10.1016/S0168-3659(97)00153-3.

    Article  CAS  PubMed  Google Scholar 

  21. Stott PW, Williams AC, Barry BW. Mechanistic study into the enhanced transdermal permeation of a model β-blocker, propranolol, by fatty acids: a melting point depression effect. Int J Pharm. 2001;219:161–76. https://doi.org/10.1016/S0378-5173(01)00645-7.

    Article  CAS  PubMed  Google Scholar 

  22. Parakh D. SELF MICRO-EMULSIFYING DRUG DELIVERY SYSTEM: APPROACH TO IMPROVE SOLUBILITY AND PERMEABILITY. Int j inst pharm. 2015;5:21–37. https://doi.org/10.3109/10717544.2014.896058.

    Article  CAS  Google Scholar 

  23. Ibrahim MA, El-Badry M. Formulation of immediate release pellets containing famotidine solid dispersions. Saudi Pharm J. 2014;22:149–56. https://doi.org/10.1016/j.jsps.2013.01.011.

    Article  PubMed  Google Scholar 

  24. Dutok Sánchez C, Berenguer Rivas C, Rodríguez-Leblanch E, Pérez-Jackson L, Chil I, Escalona Arranz J, Reyes-Tur B, Queiroz M. Acute Toxicity and Dermal and Eye Irritation of the Aqueous and Hydroalcoholic Extracts of the Seeds of “Zapote” Pouteria mammosa (L.) Cronquist. Sci World J. 2015;1. https://doi.org/10.1155/2015/642906.

  25. Kim S-H, Heo Y, Choi S-J, Kim Y-J, Kim M-S, Kim H, Jo E, Song C-W, Lee K. Safety evaluation of zinc oxide nanoparticles in terms of acute dermal toxicity, dermal irritation and corrosion, and skin sensitization. Mol Cell Toxicol. 2016;12:93–9. https://doi.org/10.1007/s13273-016-0012-3.

    Article  CAS  Google Scholar 

  26. Kligman AM, Christophers E. Preparation of isolated sheets of human stratum corneum. Arch Dermatol. 1963;88:702–5. https://doi.org/10.1001/archderm.1963.01590240026005.

    Article  CAS  PubMed  Google Scholar 

  27. Al-Akayleh F, Jaber N, Al-Remawi M, Al Odwan G, Qinna N. Chitosan-biotin topical film: Preparation and evaluation of burn wound healing activity. Pharm Dev Technol. 2022;27:479–89. https://doi.org/10.1080/10837450.2022.2079132.

    Article  CAS  PubMed  Google Scholar 

  28. Ribeiro BD, Florindo C, Iff LdC, Coelho MAZ, Marrucho IM. Menthol-based Eutectic Mixtures: Hydrophobic Low Viscosity Solvents. ACS Sustain Chem Eng. 2015;3:2469–2477. https://doi.org/10.1021/acssuschemeng.5b00532.

  29. Prahlada Rao S, Sunkada S. Making sense of boiling points and melting points. Resonance. 2007;12:43–57. https://doi.org/10.1007/s12045-007-0059-5.

    Article  Google Scholar 

  30. Roberts JD, Caserio MC. Basic principles of organic chemistry: WA Benjamin, Inc. 1977.

  31. Xu G-C, Ding J-C, Han R-Z, Dong J-J, Ni Y. Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresour Technol. 2016;203:364–9. https://doi.org/10.1016/j.biortech.2015.11.002.

    Article  CAS  PubMed  Google Scholar 

  32. Lynch ML, Wireko F, Tarek M, Klein M. Intermolecular interactions and the structure of fatty acid− soap crystals. J Phys Chem B. 2001;105:552–61. https://doi.org/10.1021/jp002602a.

    Article  CAS  Google Scholar 

  33. Abo-Hamad A, Hayyan M, AlSaadi MA, Hashim MA. Potential applications of deep eutectic solvents in nanotechnology. J Chem Eng. 2015;273:551–67. https://doi.org/10.1016/j.cej.2015.03.091.

    Article  CAS  Google Scholar 

  34. Luo J, Conrad O, Vankelecom IFJ. Physicochemical properties of phosphonium-based and ammonium-based protic ionic liquids. J Mater. 2012;22:20574–9. https://doi.org/10.1039/C2JM34359B.

    Article  CAS  Google Scholar 

  35. Bratož S, Hadži D, Sheppard N. The infra-red absorption bands associated with the COOH and COOD groups in dimeric carboxylic acid—II: The region from 3700 to 1500 cm−1. Spectrochim. 1956;8:249–61. https://doi.org/10.1016/0371-1951(56)80031-3.

    Article  Google Scholar 

  36. Beare-Rogers JL, Dieffenbacher A, Holm JV. Lexicon of lipid nutrition (IUPAC Technical Report). Pure Appl Chem. 2001;73:685–744. https://doi.org/10.1351/pac200173040685.

    Article  CAS  Google Scholar 

  37. Song W, Zhao Z, Zheng H, Wang G. Gamma-irradiation synthesis of quaternary phosphonium cationic starch flocculants. Water science and technology : a journal of the International Association on Water Pollution Research. 2013;68:1778–84. https://doi.org/10.2166/wst.2013.351.

    Article  CAS  PubMed  Google Scholar 

  38. Socrates G. Infrared characteristic group frequencies: tables and charts. (No Title) 1995.

  39. Phaechamud T, Tuntarawongsa S, Charoensuksai P. Evaporation Behavior and Characterization of Eutectic Solvent and Ibuprofen Eutectic Solution. AAPS PharmSciTech. 2016;17:1213–20. https://doi.org/10.1208/s12249-015-0459-x.

    Article  CAS  PubMed  Google Scholar 

  40. Martín-Acebes MA, Vázquez-Calvo Á, Caridi F, Saiz J-C, Sobrino F. Lipid involvement in viral infections: present and future perspectives for the design of antiviral strategies. Lipid Metabolism. 2013;291–322. https://doi.org/10.5772/51068.

  41. ten Grotenhuis E, van Aken GA, van Malssen KF, Schenk H. Polymorphism of milk fat studied by differential scanning calorimetry and real-time X-ray powder diffraction. JAOCS. 1999;76:1031–9. https://doi.org/10.1007/s11746-999-0201-5.

    Article  Google Scholar 

  42. Aroso IM, Silva JC, Mano F, Ferreira ASD, Dionísio M, Sá-Nogueira I, Barreiros S, Reis RL, Paiva A, Duarte ARC. Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systems. Eur J Pharm Biopharm. 2016;98:57–66. https://doi.org/10.1016/j.ejpb.2015.11.002.

    Article  CAS  PubMed  Google Scholar 

  43. Fini A, Cavallari C, Bassini G, Ospitali F, Morigi R. Diclofenac Salts, Part 7: Are the Pharmaceutical Salts with Aliphatic Amines Stable? J Pharm Sci. 2012;101:3157–68. https://doi.org/10.1002/jps.23052.

    Article  CAS  PubMed  Google Scholar 

  44. Dai Z, Liu Y, Zhang X, Shi M, Wang B, Wang D, Huang L, Zhang X. Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides. Metab Eng. 2013;20:146–56. https://doi.org/10.1016/j.ymben.2013.10.004.

    Article  CAS  PubMed  Google Scholar 

  45. Fini A, Bassini G, Monastero A, Cavallari C. Diclofenac salts, VIII. Effect of the counterions on the permeation through porcine membrane from aqueous saturated solutions. Pharmaceutics. 2012;4:413–429. https://doi.org/10.3390/pharmaceutics4030413.

  46. Paul R, Chattaraj KG, Paul S. Role of hydrotropes in sparingly soluble drug solubilization: insight from a molecular dynamics simulation and experimental perspectives. Langmuir. 2021;37(16):4745–62. https://doi.org/10.1021/acs.langmuir.1c00169.

    Article  CAS  PubMed  Google Scholar 

  47. Kumar ST, Prakash DG, Nagendra GN. Effect of hydrotropes on solubility and mass transfer coefficient of lauric acid. Korean J Chem Eng. 2009;26:1328–33. https://doi.org/10.1007/s11814-009-0219-2.

    Article  CAS  Google Scholar 

  48. Thorat YS, Gonjari ID, Hosmani AH. Solubility enhancement techniques: a review on conventional and novel approaches. Int J Pharm Sci Res. 2011;2:2501. https://doi.org/10.13040/IJPSR.0975-8232.2(10).2501-13.

  49. Chau TT, Bruckard WJ, Koh PTL, Nguyen AV. A review of factors that affect contact angle and implications for flotation practice. Adv Coll Interface Sci. 2009;150(2):106–15. https://doi.org/10.1016/j.cis.2009.07.003.

    Article  CAS  Google Scholar 

  50. Toğrul H, Arslan N. Production of carboxymethyl cellulose from sugar beet pulp cellulose and rheological behaviour of carboxymethyl cellulose. Carbohydr Polym. 2003;54:73–82. https://doi.org/10.1016/S0144-8617(03)00147-4.

    Article  CAS  Google Scholar 

  51. Wei Z, Qi X, Li T, Luo M, Wang W, Zu Y, Fu Y. Application of natural deep eutectic solvents for extraction and determination of phenolics in Cajanus cajan leaves by ultra performance liquid chromatography. Sep Purif Technol. 2015;149:237–44. https://doi.org/10.1016/j.seppur.2015.05.015.

    Article  CAS  Google Scholar 

  52. Cherrat L, Espina L, Bakkali M, García-Gonzalo D, Pagán R, Laglaoui A. Chemical composition and antioxidant properties of Laurus nobilis L. and Myrtus communis L. essential oils from Morocco and evaluation of their antimicrobial activity acting alone or in combined processes for food preservation. J Sci Food Agric. 2014;94:1197–1204. https://doi.org/10.1002/jsfa.6397.

  53. Rustan AC, Drevon CA. Fatty Acids: Structures and Properties. Encyclop Life Sci. 2001.

  54. Paiva A, Craveiro R, Aroso I, Martins M, Reis RL, Duarte ARC. Natural Deep Eutectic Solvents – Solvents for the 21st Century. ACS Sustain Chem Eng. 2014;2:1063–71. https://doi.org/10.1021/sc500096j.

    Article  CAS  Google Scholar 

  55. Megwa SA, Cross SE, Whitehouse MW, Benson HAE, Roberts MS. Effect of Ion Pairing with Alkylamines on the In-vitro Dermal Penetration and Local Tissue Disposition of Salicylates. J Pharm Pharmacol. 2000;52:929–40. https://doi.org/10.1211/0022357001774813.

    Article  CAS  PubMed  Google Scholar 

  56. Ibrahim SA, Li SK. Efficiency of fatty acids as chemical penetration enhancers: mechanisms and structure enhancement relationship. Pharm Res. 2010;27:115–25. https://doi.org/10.1007/s11095-009-9985-0.

    Article  CAS  PubMed  Google Scholar 

  57. Carrara D. Composition for controlled and sustained transdermal administration. Google Patents. 2001.

  58. Walker RB, Smith EW. The role of percutaneous penetration enhancers. Adv Drug Deliv Rev. 1996;18:295–301. https://doi.org/10.1016/0169-409X(95)00078-L.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deanship of Scientific Research at the University of Petra [Fund number 8/4/2022].

Funding

This work was supported by the Deanship of Scientific Research at the University of Petra (Fund number 8/4/2022).

Author information

Authors and Affiliations

Authors

Contributions

Layaly Al-Mawla, Faisal Al-Akayleh: Conceptualization, supervision, and writing — original draft. Saifeddin Daadoue, Waseem Mahyoob, Badralbdoor Al-Tameemi: methodology and formal analysis. Mayyas Al-Remawi: formal analysis, resources, and validation. Samer Adwan: resources and formal analysis. Ahmed S.A. Ali Agha: validation, software, and visualization.

Corresponding author

Correspondence to Faisal Al-Akayleh.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Novel Development of Therapeutic Deep Eutectic Systems (THEDES).

• Alignment with Principles of Green Chemistry.

• Innovative Mechanism of Drug Permeation.

• Versatility and Enhanced Drug Solubilization.

• First Report on Three-Component DESs with Gelucire® 33/01.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Mawla, L., Al-Akayleh, F., Daadoue, S. et al. Development, Characterization, and Ex Vivo Permeation Assessment of Diclofenac Diethylamine Deep Eutectic Systems Across Human Skin. J Pharm Innov 18, 2196–2209 (2023). https://doi.org/10.1007/s12247-023-09784-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-023-09784-9

Keywords

Navigation