Skip to main content
Log in

Hydrochlorides and Dodecahydro-closo-dodecaborates of Amino Derivatives of 1,3,5-Triazine in the Technology of Isolation and Purification of the [B12H12]2– Anion

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The possibility of using salts of 2,4,6-triamine-1,3,5-triazine, 2,4-diamine-6-methyl-1,3,5-triazine, and 2,4-diamine-6-phenyl-1,3,5-triazine for isolation of the dodecahydro-closo-dodecaborate anion [B12H12]2– from aqueous solutions has been studied. Compound [2,4-(NH2)2-6-Ph-1,3,5-N3С3H]2[B12H12]⋅H2O (solubility 0.06 g in 100 g water at 17°C), promising for the precipitation of the [B12H12]2– anion, has been isolated by the metathesis reaction of moderately soluble hydrochloride [2,4-(NH2)2-6-Ph-1,3,5-N3С3H]Cl⋅H2O with sodium and potassium dodecahydro-closo-dodecaborates. A procedure has been developed for the decomposition of [2,4-(NH2)2-6-Ph-1,3,5-N3С3H]2[B12H12]⋅H2O with ammonium hydroxide to obtain soluble salts of the [B12H12]2– anion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. B. M. Mikhailov, Chemistry of Borohydrides (Nauka, Moscow, 1967).

    Google Scholar 

  2. E. L. Muetterties, Boron Hydride Chemistry (Academic Press, New York, 1975).

    Google Scholar 

  3. I. B. Sivaev, V. I. Bregadze, and S. Sjöberg, Collect. Czech. Chem. Commun. 67, 679 (2002).

    Article  CAS  Google Scholar 

  4. N. T. Kuznetsov, S. P. Ionov, and K. A. Solntsev, Development of the Concept of Aromaticity. Polyhedral Structures (Nauka, Moscow, 2009) [in Russian].

    Google Scholar 

  5. N. T. Kuznetsov, K. A. Solntsev, and A. V. Agafonov, Koord. Khim. 5, 1297 (1979).

    CAS  Google Scholar 

  6. A. Yu. Bykov, N. N. Mal’tseva, N. B. Generalova, et al., Russ. J. Inorg. Chem. 58, 1321 (2013). https://doi.org/10.1134/S003602361311003X

    Article  CAS  Google Scholar 

  7. V. I. Saldin, V. V. Sukhovei, L. N. Ignat’eva, et al., Khim. Tekhnol. 20, 615 (2019). https://doi.org/10.31044/1684-5811-2019-20-13-615-619

    Article  Google Scholar 

  8. V. Geis, K. Guttsche, C. Knapp, et al., Dalton Trans. 2687 (2009). https://doi.org/10.1039/b821030f

  9. M. F. Hawthorne, Angew. Chem., Int. Ed. Engl. 32, 950 (1993). https://doi.org/10.1002/anie.199309501

    Article  Google Scholar 

  10. I. B. Sivaev, V. I. Bregadze, and N. T. Kuznetsov, Russ. Chem. Bull. 51, 1362 (2002).

    Article  CAS  Google Scholar 

  11. R. F. Barth, P. Mi, and W. Yang, Cancer Commun. 38, 35 (2018). https://doi.org/10.1186/s40880-018-0299-7

    Article  Google Scholar 

  12. F. Ali, N. Hosmane, and Y. Zhu, Molecules 25, 828 (2020). https://doi.org/10.3390/molecules25040828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A. V. Nelyubin, N. A. Selivanov, A. Y. Bykov, et al., Int. J. Mol. Sci. 22, 13391 (2021). https://doi.org/10.3390/ijms222413391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. V. V. Avdeeva, T. M. Garaev, E. A. Malinina, et al., Russ. J. Inorg. Chem. 67, 28 (2022). https://doi.org/10.1134/S0036023622010028

    Article  CAS  Google Scholar 

  15. J. W. Johnson and J. F. Broady, J. Electrochem. Soc. 129, 2213 (1982).

    Article  CAS  Google Scholar 

  16. L. He, H.-W. Li, H. Nakajima, et al., Chem. Mater. 27, 5483 (2015).

    Article  CAS  Google Scholar 

  17. H. Hagemann, Molecules 26, 7425 (2021). https://doi.org/10.3390/molecules26247425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. R. Bernard, D. Cornu, B. Grüner, et al., J. Organomet. Chem. 657, 83 (2002). https://doi.org/10.1016/S0022-328X(02)01540-1

    Article  CAS  Google Scholar 

  19. T. B. Yisgedu, X. Chen, S. Schricker, et al., Chem.—Eur. J. 15, 2190 (2009). https://doi.org/10.1002/chem.200801430

    Article  CAS  PubMed  Google Scholar 

  20. I. B. Sivaev, Chem. Heterocycl. Comp. 53, 638 (2017).

    Article  CAS  Google Scholar 

  21. Z. Zhang, Y. Zhang, Z. Li, et al., Eur. J. Inorg. Chem. 2018, 981 (2018). https://doi.org/10.1002/ejic.201701206

    Article  CAS  Google Scholar 

  22. P. Sharon, M. Afri, S. Mitlin, et al., Polyhedron 157, 71 (2019). https://doi.org/10.1016/j.poly.2018.09.055

    Article  CAS  Google Scholar 

  23. S. E. Korolenko, V. V. Avdeeva, E. A. Malinina, et al., Russ. J. Inorg. Chem. 66, 1350 (2021). https://doi.org/10.1134/S0036023621090047

    Article  CAS  Google Scholar 

  24. I. B. Sivaev, Russ. J. Inorg. Chem. 66, 1289 (2021). https://doi.org/10.1134/S0036023621090151

    Article  CAS  Google Scholar 

  25. E. A. Malinina, S. E. Korolenko, A. S. Kubasov, et al., Polyhedron 184, 114566 (2020). https://doi.org/10.1016/j.poly.2020.114566

    Article  CAS  Google Scholar 

  26. E. Yu. Matveev, V. V. Avdeeva, K. Yu. Zhizhin, et al., Inorganics 10, 238 (2022). https://doi.org/10.3390/inorganics10120238

    Article  CAS  Google Scholar 

  27. V. V. Avdeeva, E. A. Malinina, and N. T. Kuznetsov, Coord. Chem. Rev. 469, 214636 (2022). https://doi.org/10.1016/jccr.2022.214636

    Article  CAS  Google Scholar 

  28. Boron Science: New Technologies and Applications, Ed. by N. S. Hosmane (CRC Press, Boca Raton, 2012). https://doi.org/10.1201/b11199

    Book  Google Scholar 

  29. E. A. Malinina, I. I. Myshletsov, G. A. Buzanov, et al., Molecules 28, 453 (2023). https://doi.org/10.3390/molecules28010453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. N. T. Kuznetsov, K. A. Solntsev, and L. N. Kulikova, Koord. Khim. 2, 1574 (1976).

    CAS  Google Scholar 

  31. V. K. Skachkova, L. V. Goeva, A. V. Grachev, et al., Russ. J. Inorg. Chem. 62, 84 (2017). https://doi.org/10.1134/S0036023617010211

    Article  CAS  Google Scholar 

  32. V. I. Saldin, V. V. Sukhovei, L. N. Ignat’eva, et al., Theor. Found. Chem. Eng. 44, 467 (2010).

    Article  CAS  Google Scholar 

  33. B. Bann and S. A. Miller, Chem. Rev. 58, 131 (1958). https://doi.org/10.1021/cr50019a004

    Article  CAS  Google Scholar 

  34. Chemical Encyclopedia. Copper—Polymers, Ed. by I. L. Knunyants, vol. 3 (Bol’shaya Ross. Entsikl., Moscow, 1992) [in Russian].

    Google Scholar 

  35. V. I. Saldin, A. B. Slobodyuk, and V. V. Sukhovei, Russ. J. Inorg. Chem. 67, 1012 (2022). https://doi.org/10.1134/S003602362207021X

    Article  CAS  Google Scholar 

  36. N. T. Kuznetsov, L. N. Kulikova, Zhurn. Anal. Khim. 31, 1312 (1976).

    Google Scholar 

  37. U. Athikomrattanakul, C. Promptmas, M. Katterle, et al., Acta Crystallogr., Sect. E 63 (2007). https://doi.org/10.1107/S1600536807014791

  38. V. I. Saldin, L. N. Ignat’eva, V. A. Mashchenko, et al., Vestnik DVO RAN 6, 77 (2022). https://doi.org/10.37102/0869-7698_2022_226_06_7

    Article  Google Scholar 

  39. Sh. Sheshmani, M. Ghadermazi, H. Aghabozorg, et al., Acta Crystallogr., Sect E 62 (2006). https://doi.org/10.1107/S1600536806038475

  40. V. I. Saldin, V. V. Sukhovei, RF Patent 2617778, Byull. Izobret. 2017, No. 12.

  41. T. Tashiro, J. Heterocycl. Chem. 39, 615 (2002). https://doi.org/10.1002/jhet.5570390402

    Article  CAS  Google Scholar 

  42. T. Peymann, C. B. Knobler, and M. F. Hawthorne, Inorg. Chem. 39, 1163 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. G. B. Seifer, Russ. J. Coord. Chem. 28, 301 (2002).

    Article  CAS  Google Scholar 

  44. W. J. Orwill Thomas, Trans. Faraday Soc. 55, 203 (1959).

    Article  Google Scholar 

  45. A. I. Konovalov, I. S. Ryzhkina, L. I. Murtazina, et al., Izv. Akad. Nauk., Ser. Khim. 6, 1207 (2008).

    Google Scholar 

  46. V. I. Saldin, A. B. Slobodyuk, N. N. Savchenko, et al., Russ. J. Phys. Chem. A 92, 2210 (2018). https://doi.org/10.1134/S0036024418110353

    Article  CAS  Google Scholar 

  47. M. K. Marchewka, Mater. Sci. Eng. B 95, 214 (2002).

    Article  Google Scholar 

  48. T. S. Miller, A. B. Jorge, T. M. Suter, et al., Phys. Chem. Chem. Phys. 19, 15613 (2017). https://doi.org/10.1039/C7CP0211G

    Article  CAS  PubMed  Google Scholar 

  49. S. V. Ivanov, E. A. Malinina, K. A. Solntsev, et al., Koord. Khim. 18, 394 (1992).

    CAS  Google Scholar 

Download references

Funding

The work was carried out within the framework of the State Assignment of the Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences (topic FWFN (205)-2022-0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Saldin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saldin, V.I., Ignat’eva, L.N., Mashchenko, V.A. et al. Hydrochlorides and Dodecahydro-closo-dodecaborates of Amino Derivatives of 1,3,5-Triazine in the Technology of Isolation and Purification of the [B12H12]2– Anion. Russ. J. Inorg. Chem. 68, 1363–1370 (2023). https://doi.org/10.1134/S0036023623601915

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623601915

Keywords:

Navigation