Skip to main content
Log in

Value-added services decisions of bilateral platform with user expectation and resources constraint

  • Published:
Electronic Commerce Research Aims and scope Submit manuscript

Abstract

This paper studies the value-added services (VAS) investment and pricing strategies of monopoly bilateral platform with limited resources and asymmetric user information. By constructing a game theory model, we conclude that the platform earns higher profits when both of the bilateral users are informed than when the sellers are informed and the buyers are uninformed. The passive expectation of uninformed users weakens the monopoly power of platform pricing and causes lower platform profit. Additionally, the VAS investment and pricing strategies of the platform are jointly influenced by users’ cross-network externality and marginal utility. Among them, the platform investment is mainly related to marginal utility, and its pricing strategies depend heavily on the cross-network externality. Moreover,Uninformed users with passive expectation enforce the platform to invest all of the resources and higher service level in them when the cross-network externality of users on either side does not have a decisive advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statement

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Anderson, E. G., Jr., Parker, G. G., & Tan, B. (2014). Platform performance investment in the presence of network externalities. Information Systems Research, 25(1), 152–172.

    Article  Google Scholar 

  2. Aoyagi, M. (2018). Bertrand competition under network externalities. Journal of Economic Theory, 178, 517–550.

    Article  Google Scholar 

  3. Armstrong, M. (2006). Competition in two-sided markets. The RAND Journal of Economics, 37(3), 668–691.

    Article  Google Scholar 

  4. Badiee, A., & Ghazanfari, M. (2018). A monopoly pricing model for diffusion maximization based on heterogeneous nodes and negative network externalities (case study: A novel product). Decision Science Letters, 7(3), 287–300.

    Article  Google Scholar 

  5. Bandera, C. (2017). Value-added service providers for mobile education: Empirical challenges and analytics. Electronic Commerce Research, 17(2), 317–333.

    Article  Google Scholar 

  6. Belleflamme, P., & Peitz, M. (2019). Managing competition on a two-sided platform. Journal of Economics and Management Strategy, 28(1), 5–22.

    Google Scholar 

  7. Belleflamme, P., & Peitz, M. (2019). Price disclosure by two-sided platforms. International Journal of Industrial Organization, 67, 102529.

    Article  Google Scholar 

  8. Belleflamme, P., & Toulemonde, E. (2009). Negative intra-group externalities in two-sided markets. International Economic Review, 50(1), 245–272.

    Article  Google Scholar 

  9. Bhargava, H. K., & Choudhary, V. (2004). Economics of an information intermediary with aggregation benefits. Information Systems Research, 15(1), 22–36.

    Article  Google Scholar 

  10. Caillaud, B., & Jullien, B. (2003). Chicken & egg: Competition among intermediation service providers. The RAND Journal of Economics, 34(2), 309–328.

    Article  Google Scholar 

  11. Colasante, A., Palestrini, A., Russo, A., & Gallegati, M. (2017). Adaptive expectations versus rational expectations: Evidence from the lab. International Journal of Forecasting, 33(4), 988–1006.

    Article  Google Scholar 

  12. Dou, G., & He, P. (2017). Value-added service investing and pricing strategies for a two-sided platform under investing resource constraint. Journal of Systems Science and Systems Engineering, 26(5), 609–627.

    Article  Google Scholar 

  13. Dou, G., He, P., & Xu, X. (2016). One-side value-added service investment and pricing strategies for a two-sided platform. International Journal of Production Research, 54(13), 3808–3821.

    Article  Google Scholar 

  14. Duan, Y., Liu, P., & Feng, Y. (2022). Pricing strategies of two-sided platforms considering privacy concerns. Journal of Retailing and Consumer Services, 64, 102781.

    Article  Google Scholar 

  15. Dushnitsky, G., Piva, E., & Rossi-Lamastra, C. (2022). Investigating the mix of strategic choices and performance of transaction platforms: Evidence from the crowdfunding setting. Strategic Management Journal, 43(3), 563–598.

    Article  Google Scholar 

  16. Gong, B., Gao, Y., Li, K. W., Liu, Z., & Huang, J. (2022). Cooperate or compete? A strategic analysis of formal and informal electric vehicle battery recyclers under government intervention. International Journal of Logistics Research and Applications, 1–21.

  17. Hagiu, A., & Hałaburda, H. (2014). Information and two-sided platform profits. International Journal of Industrial Organization, 34, 25–35.

    Article  Google Scholar 

  18. Hagiu, A., & Spulber, D. (2013). First-party content and coordination in two-sided markets. Management Science, 59(4), 933–949.

    Article  Google Scholar 

  19. Hagiu, A., & Wright, J. (2015). Multi-sided platforms. International Journal of Industrial Organization, 43, 162–174.

    Article  Google Scholar 

  20. Hong, X., Wang, L., Gong, Y., & Chen, W. (2020). What is the role of value-added service in a remanufacturing closed-loop supply chain? International Journal of Production Research, 58(11), 3342–3361.

    Article  Google Scholar 

  21. Horn, G., Martin, K. M., & Mitchell, C. J. (2002). Authentication protocols for mobile network environment value-added services. IEEE Transactions on Vehicular Technology, 51(2), 383–392.

    Article  Google Scholar 

  22. Katz, M. L., & Shapiro, C. (1985). Network externalities, competition, and compatibility. The American Economic Review, 75(3), 424–440.

    Google Scholar 

  23. Li, J., & Zhang, Y. (2020). The side with larger network externality should be targeted aggressively? Monopoly pricing, reference price and two-sided markets. Electronic Commerce Research and Applications, 43, 100995.

    Article  Google Scholar 

  24. Lin, Y., & Chen, Y. (2015). Competitive outsourcing: Choosing between value-added services and key component supplying capability. International Journal of Production Research, 53(12), 3635–3650.

    Article  Google Scholar 

  25. Liu, M., Zhao, Y., Huang, R., & Perera, S. (2021). Vertical value-added cost information sharing in a supply chain. Annals of Operations Research, 1–34.

  26. Liu, W., Yan, X., Wei, W., & Xie, D. (2019). Pricing decisions for service platform with provider’s threshold participating quantity, value-added service and matching ability. Transportation Research Part E: Logistics and Transportation Review, 122, 410–432.

    Article  Google Scholar 

  27. Liu, Z., Wan, M., Zheng, X., & Koh, S. L. (2022). Fairness concerns and extended producer responsibility transmission in a circular supply chain. Industrial Marketing Management, 102, 216–228.

    Article  Google Scholar 

  28. McIntyre, D. P., & Srinivasan, A. (2017). Networks, platforms, and strategy: Emerging views and next steps. Strategic Management Journal, 38(1), 141–160.

    Article  Google Scholar 

  29. Parker, G. G., & Van Alstyne, M. W. (2005). Two-sided network effects: A theory of information product design. Management Science, 51(10), 1494–1504.

    Article  Google Scholar 

  30. Rietveld, J., & Schilling, M. A. (2021). Platform competition: A systematic and interdisciplinary review of the literature. Journal of Management, 47(6), 1528–1563.

    Article  Google Scholar 

  31. Rochet, J., & Tirole, J. (2002). Cooperation among competitors: Some economics of payment card associations. The RAND Journal of Economics, 33(4), 549–570.

    Article  Google Scholar 

  32. Rochet, J. C., & Tirole, J. (2006). Two-sided markets: A progress report. The RAND Journal of Economics, 37(3), 645–667.

    Article  Google Scholar 

  33. Rong, K., Xiao, F., Zhang, X., & Wang, J. (2019). Platform strategies and user stickiness in the online video industry. Technological Forecasting and Social Change, 143, 249–259.

    Article  Google Scholar 

  34. Russo, S. M., & Gronalt, M. (2021). Value added services at intermodal inland terminals and the importance of choosing a moderate innovation path. Research in Transportation Business and Management, 41, 100694.

    Article  Google Scholar 

  35. Salem, A. M., Elhingary, E. A., & Zerek, A. R. (2013). Value added service for mobile communications. In 4th International Conference on Power Engineering, Energy and Electrical Drives (pp. 1784–1788). IEEE.

  36. Tan, B., Anderson, E. G., Jr., & Parker, G. G. (2020). Platform pricing and investment to drive third-party value creation in two-sided networks. Information Systems Research, 31(1), 217–239.

    Article  Google Scholar 

  37. Tang, D., & Lei, J. (2016). B2c e-commerce platform competition strategy research based on the network externality. Management Science and Engineering, 10(2), 70–76.

    Google Scholar 

  38. Tang, X., Lu, H., Huang, W., & Liu, S. (2021). Investment decisions and pricing strategies of crowdfunding players: In a two-sided crowdfunding market. Electronic Commerce Research, pages 1–32.

  39. Wang, S., Chen, H., & Wu, D. (2019). Regulating platform competition in two-sided markets under the O2O era. International Journal of Production Economics, 215, 131–143.

    Article  Google Scholar 

  40. Wang, Y.-Y., Tao, F., & Wang, J. (2022). Information disclosure and blockchain technology adoption strategy for competing platforms. Information & Management, 59(7), 103506.

    Article  Google Scholar 

  41. Wu, C., & Chamnisampan, N. (2021). Platform entry and homing as competitive strategies under cross-sided network effects. Decision Support Systems, 140, 113428.

    Article  Google Scholar 

  42. Wu, J., Li, H., Lin, Z., & Zheng, H. (2017). Competition in wearable device market: The effect of network externality and product compatibility. Electronic Commerce Research, 17(3), 335–359.

    Article  Google Scholar 

  43. Wu, T., Zhang, M., Tian, X., Wang, S., & Hua, G. (2020). Spatial differentiation and network externality in pricing mechanism of online car hailing platform. International Journal of Production Economics, 219, 275–283.

    Article  Google Scholar 

  44. Xie, J., Zhu, W., Wei, L., & Liang, L. (2021). Platform competition with partial multi-homing: When both same-side and cross-side network effects exist. International Journal of Production Economics, 233, 108016.

    Article  Google Scholar 

  45. Xu, B., & Zhu, D. (2007). Extended hotelling model with network externality. Management Science, 10(1), 9–18.

    Google Scholar 

  46. Xu, X., Dou, G., & Yu, Y. (2021). Government investment strategy and platform pricing decisions with the cross-market network externality. Kybernetes, 50(3), 711–736.

    Article  Google Scholar 

  47. Yoo, B., Choudhary, V., & Mukhopadhyay, T. (2002). A model of neutral B2B intermediaries. Journal of Management Information Systems, 19(3), 43–68.

    Article  Google Scholar 

  48. Zhang, C., Ma, H., Xiao, M., Tian, Y., & Fan, L. (2019). Value-added service investment and pricing strategies of a multilateral distribution platform considering user-homing in a duopoly. IEEE Access, 7, 98340–98355.

    Article  Google Scholar 

  49. Zhang, X., Han, X., Liu, X., Liu, R., & Leng, J. (2015). The pricing of product and value-added service under information asymmetry: A product life cycle perspective. International Journal of Production Research, 53(1), 25–40.

    Article  Google Scholar 

  50. Zhang, X., Li, G., Liu, M., & Sethi, S. P. (2021). Online platform service investment: A bane or a boon for supplier encroachment. International Journal of Production Economics, 235, 108079.

    Article  Google Scholar 

  51. Zhang, X., Sui, R., Dan, B., & Guan, Z. (2021). Bilateral value-added services and pricing strategies of the third-party platform considering the cross-network externality. Computers & Industrial Engineering, 155, 107196.

    Article  Google Scholar 

  52. Zhang, Z., Xu, H., Chen, K., Zhao, Y., & Liu, Z. (2023). Channel mode selection for an e-platform supply chain in the presence of a secondary marketplace. European Journal of Operational Research, 305(3), 1215–1235.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Dong.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is partially supported by the National Natural Science Foundation of China [Grant No. 72071002], Natural Science Foundation of Anhui Province [Grant No. 2008085MG229], Universities Scientific Research Project of Anhui Province [Grant No. YJS20210455], Scientific Research Project of of Anhui Polytechnic University [Grant No. 2021YQQ055], Social Science Innovation and Development Research Project of Anhui Province [Grant No. 2022XC059] and School-level Scientific Research Project of Anhui Polytechnic University [Grant No. Xjky2022131].

Appendix A: Proof

Appendix A: Proof

1.1 Appendix A.1: Proof of Theorem 1

Based on the profit function:

$$\begin{aligned} \pi&=(1+\alpha _{b}n_{s}^e+\beta _{b}x_{b}-p_{b})p_{b}+(\alpha _{s}+\alpha _{b}\alpha _{s}n_{s} ^e+\alpha _{s}\beta _{b}x_{b}-\alpha _{s}p_{b}\\&\quad +\beta _{s}x_{s}-p_{s})p_{s}-\frac{\phi }{2}x_{b}^2-\frac{\phi }{2}x_{b}^2 \end{aligned}$$

The first-order condition can be written as:

$$\begin{aligned} \left\{ \begin{array}{l} \frac{\partial \pi }{\partial p_{b}}=\alpha _{b}n_{s}^e-2p_{b}-\alpha _{s}p_{s}+x_{b}\beta _{b}+1 \\ \frac{\partial \pi }{\partial p_{s}}=\alpha _{s}-2p_{s}-\alpha _{s} p_{b} + \beta _{s} x_{s} +\alpha _{s}\alpha _{b}n_{s}^e+\alpha _{s} \beta _{b} x_{b} \\ \frac{\partial \pi }{\partial x_{b}}=-\phi x_{b}+p_{b}\beta _{b}+p_{s}\alpha _{s}\beta _{b}\\ \frac{\partial \pi }{\partial x_{s}}=p_{s}\beta _{s}-\phi x_{s}\\ \end{array} \right. \end{aligned}$$
(6)

The corresponding Hessian matrix are as following:

$$\begin{aligned} H(p_{b},p_{s},x_{b},x_{s})=\begin{pmatrix} \frac{\partial ^{2}\pi }{\partial p_{b}^{2}}&{} \frac{\partial ^{2}\pi }{\partial p_{b}\partial p_{s}} &{} \frac{\partial ^{2}\pi }{\partial p_{b}\partial x_{b}}&{} \frac{\partial ^{2}\pi }{\partial p_{b}\partial x_{s}}\\ \frac{\partial ^{2}\pi }{\partial p_{s}\partial p_{b}}&{} \frac{\partial ^{2}\pi }{\partial p_{s}^{2}} &{} \frac{\partial ^{2}\pi }{\partial p_{s}\partial x_{b}}&{} \frac{\partial ^{2}\pi }{\partial p_{s}\partial x_{s}}\\ \frac{\partial ^{2}\pi }{\partial x_{b}\partial p_{b}}&{} \frac{\partial ^{2}\pi }{\partial x_{b}\partial p_{s}} &{} \frac{\partial ^{2}\pi }{\partial x_{b}^{2}}&{} \frac{\partial ^{2}\pi }{\partial x_{b}\partial x_{s}}\\ \frac{\partial ^{2}\pi }{\partial p_{b}\partial x_{s}}&{} \frac{\partial ^{2}\pi }{\partial p_{s}\partial x_{s}} &{} \frac{\partial ^{2}\pi }{\partial x_{b}\partial x_{s}}&{} \frac{\partial ^{2}\pi }{\partial x_{s}^{2}} \end{pmatrix}=\begin{pmatrix} -2&{}-\alpha _{s}&{}\beta _{b}&{}0\\ -\alpha _{s}&{}-2&{}\alpha _{s}\beta _{b}&{}\beta _{s}\\ \beta _{b}&{}\alpha _{s}\beta _{b}&{}-\phi &{}0\\ 0&{}\beta _{s}&{}0&{}-\phi \end{pmatrix} \end{aligned}$$

It is easy to know that \(\left| H_{1} \right| =\left| -2 \right| <0\), \(\left| H_{2} \right| =\left| \begin{array}{ll} -2&{}\quad -\alpha _{s}\\ -\alpha _{s}&{} \quad -2 \end{array}\right| =4-\alpha _{s}^2>0\), \(\left| H_{3} \right| =\left| \begin{array}{lll} -2&{}\quad -\alpha _{s}&{}\quad \beta _{b}\\ -\alpha _{s}&{}\quad -2&{}\quad \alpha _{s}\beta _{b}\\ \beta _{b}&{}\quad \alpha _{s}\beta _{b}&{}\quad -\phi \end{array}\right| =-4\phi +\phi \alpha _{s}^2+2\beta _{b}^2\) and \(\left| H_{4} \right| =\left| \begin{array}{llll} -2&{}\quad -\alpha _{s}&{}\quad \beta _{b}&{}\quad 0\\ -\alpha _{s}&{}\quad -2&{}\quad \alpha _{s}\beta _{b}&{}\quad \beta _{s}\\ \beta _{b}&{}\quad \alpha _{s}\beta _{b}&{}\quad -\phi &{}\quad 0\\ 0&{}\quad \beta _{s}&{}\quad 0&{}\quad -\phi \end{array}\right| =4\phi ^2-\phi ^2\alpha _{s}^2-2\phi \beta _{b}^2-2\phi \beta _{s}^2+\beta _{b}^2\beta _{s}^2\).

We can verify that \(\left| H_{3} \right| <0\), when \(\phi >\frac{2\beta _{b}^2}{4-\alpha _{s}^2}\). \(\left| H_{4} \right|\) can be taken as a function of \(\phi\): \(\left| H_{4} \right| =(4-\alpha _{s}^2)\phi ^2-2(\beta _{b}^2+\beta _{s}^2)\phi +\beta _{s}^2\beta _{b}^2\), let \(a=4-\alpha _{s}^2, b=-2(\beta _{b}^2+\beta _{s}^2)\) and \(c=\beta _{s}^2\beta _{b}^2\), the solutions of \(\left| H_{4} \right| =0\) are \(\phi ^{1}=\frac{\beta _{s}^2+\beta _{b}^2\pm \sqrt{(\beta _{s}^2+\beta _{b}^2)^2-(4-\alpha _{s}^2) \beta _{s}^2\beta _{b}^2}}{4-\alpha _{s}^2}\). It is easy to verify that:

$$\begin{aligned} \phi _{1}^{1}&=\frac{\beta _{s}^2+\beta _{b}^2+\sqrt{(\beta _{s}^2+\beta _{b}^2)^2-(4-\alpha _{s}^2) \beta _{s}^2\beta _{b}^2}}{4-\alpha _{s}^2}>\frac{2\beta _{b}^2}{4-\alpha _{s}^2},\\ 0<\phi _{2}^{1}&=\frac{\beta _{s}^2+\beta _{b}^2-\sqrt{(\beta _{s}^2+\beta _{b}^2)^2-(4-\alpha _{s}^2) \beta _{s}^2\beta _{b}^2}}{4-\alpha _{s}^2}<\frac{2\beta _{b}^2}{4-\alpha _{s}^2}. \end{aligned}$$

Therefore, the Hessian matrix is negative definite only when \(\phi >\frac{\beta _{s}^2+\beta _{b}^2+\sqrt{(\beta _{s}^2+\beta _{b}^2)^2-(4-\alpha _{s}^2 )\beta _{s}^2\beta _{b}^2}}{4-\alpha _{s}^2}\).

Let \(\overline{\phi }=\frac{\beta _{s}^2+\beta _{b}^2+\sqrt{(\beta _{s}^2+\beta _{b}^2)^2-(4-\alpha _{s}^2) \beta _{s}^2\beta _{b}^2}}{4-\alpha _{s}^2}\), then we can obtain the following conclusions:

  1. (1)

    If \(\phi >\overline{\phi }\), the Hessian matrix is negative definite. The first-order can ensure the optimal solution from (A1).

    $$\begin{aligned} p_{b}^*&=\frac{\phi (\phi (-2+\alpha _{s}^2)+\beta _{s}^2)}{I},\; p_{s}^*=\frac{-\phi ^2\alpha _{s}}{I},\; x_{s}^*=\frac{-\phi \alpha _{s}\beta _{s}}{I}\quad {\textit{and}}\\ x_{b}^*&=\frac{\beta _{b}(-2\phi +\beta _{s}^2)}{I} \end{aligned}$$

    Let \(I=\phi =(\phi (-4+\alpha _{s}(\alpha _{b}+\alpha _{s}))+2\beta _{b}^2)+(2\phi -\beta _{b}^2)\beta -_{s}^2\), \(D_{1}=-\frac{\phi \alpha _{s}\beta _{s}}{I}\), \(D_{2}=-\frac{\beta _{b}(-2\phi +\beta _{s}^2)}{I}\), \(A=\alpha _{s}+(-2+\alpha _{s}(\alpha _{b}+\alpha _{s}))\beta _{s}\) and \(\phi ^{'}=\frac{2\beta _{b}(1+\beta _{b})+2+\beta _{s}(\alpha _{s}+2\beta _{s}) +\sqrt{18\beta _{b}^3+4\beta _{b}^4+4\beta _{b}\beta _{s}A+4\beta _{b}^2(1+\beta _{s}A) +\beta _{s}^2(\alpha _{s}+2\beta _{s})^2}}{2(4-\alpha _{s}(\alpha _{s}+\alpha _{b}))}\). Because the platform has limited resources and the level of investment satisfies the condition \(0< x_{b}+x_{s}\le 1\). There are the following two cases:

    1. (i)

      When \(D_{1}+D_{2}<1\), that is \(\phi >\phi ^{'}\). It is obvious that the optimal investment \(x_{b}^*+x_{s}^*<1\), the optimal solution and profit are \(p_{b}^*=\frac{\phi (\phi (-2+\alpha _{s}^2)+\beta _{s}^2)}{I},\) \(p_{s}^*=\frac{-\phi ^2\alpha _{s}}{I},\) \(x_{s}^*=\frac{-\phi \alpha _{s}\beta _{s}}{I},\) \(x_{b}^*=\frac{\beta _{b}(-2\phi +\beta _{s}^2)}{I},\) and \(\pi ^*=-\frac{\phi (2\phi -\beta _{s}^2)(\phi ^2\alpha _{s}^2-(2\phi -\beta _{b}^2)(2\phi -\beta _{s}^2))}{2I^2}\).

    2. (ii)

      When \(D_{1}+D_{2}\ge 1\), that is \(\phi \le \phi ^{'}\), the optimal investment \(x_{b}^*+ x_{s}^* \ge 1\), based on the resource constraint \(0< x_{b}^*+x_{s}^*\le 1\), the optimal investment are \(x_{b}^*+x_{s}^*=1\).

  2. (2)

    If \(\phi <\overline{\phi }\), the Hessian matrix is not negative definite. Since the profit function is a continuous and bounded function, the optimal solution can be obtained when investment is located in its boundary \((x_{b}=0, x_{s}=0)\), \((x_{b}=1, x_{s}=0)\) or \((x_{b}=0, x_{s}=1)\).

When \(x_{b}=0, x_{s}=0\), the optimal profit can be obtained as following:

$$\begin{aligned} \pi _{x_{b}=0,\; x_{s}=0}=\frac{4-\alpha _{s}^2}{(-4+\alpha _{s}(\alpha _{b}+\alpha _{s}))^2} \end{aligned}$$

When \(x_{b}=1, x_{s}=0\), the optimal profit can be obtained as following:

$$\begin{aligned} \pi _{x_{b}=1,\; x_{s}=0}=\frac{(4-\alpha _{s}^2)(2\phi \alpha _{b}\alpha _{s}+(2-4\phi +\phi \alpha _{s}^2+2\beta _{b} (2+\beta _{b})))}{2(-4+\alpha _{s}(\alpha _{b}+\alpha _{s}))^2} \end{aligned}$$

When \(x_{b}=0, x_{s}=1\), the optimal profit can be obtained as following:

$$\begin{aligned}&\pi _{x_{b}=0,x_{s}=1}\\&\quad =\frac{-2\alpha _{b}(-4+\alpha _{s}^2)(\phi \alpha _{s}+\beta _{s})+\alpha _{b}^2 (-\phi \alpha _{s}^2+2\beta _{s}^2)-(-4+\alpha _{s}^2)(2-4\phi +\phi \alpha _{s}^2+2\alpha _{s}\beta _{s} +2\beta _{s}^2)}{2(-4+\alpha _{s}(\alpha _{b}+\alpha _{s}))^2}\\&\pi _{x_{b}=1,\; x_{s}=0}-\pi _{x_{b}=0,\; x_{s}=0}=-\frac{\phi }{2} -\frac{(-4+\alpha _{s}^2)\beta _{b}(2+\beta _{b})}{(-4+\alpha _{s}(\alpha _{b}+\alpha _{s}))^2} \end{aligned}$$

When \(0<\phi <\phi _{6}\), then \(\pi _{x_{b}=1, x_{s}=0}> \pi _{x_{b}=0, x_{s}=0}\).

$$\begin{aligned} \pi _{x_{b}=0,\; x_{s}=1}-\pi _{x_{b}=0,\ x_{s}=0}=-\frac{\phi }{2} +\frac{\beta _{s}(-(\alpha _{b}+\alpha _{s})(-4+\alpha _{s}^2)+(4+\alpha _{b}^2-\alpha _{s}^2) \beta _{s})}{(-4+\alpha _{s}(\alpha _{b}+\alpha _{s}))^2} \end{aligned}$$

When \(0<\phi <\phi _{7}\), then \(\pi _{x_{b}=0,\ x_{s}=1}> \pi _{x_{b}=0,\ x_{s}=0}\).

Where \(\phi _{6}=\frac{16\beta _{b}-4\alpha _{s}^2\beta _{b} +8\beta _{b}^2-2\alpha _{b}^2\beta _{b}^2}{16-8\alpha _{b}\alpha _{s}-8\alpha _{s}^2+\alpha _{b} ^2\alpha _{s}^2+2\alpha _{b}\alpha _{s}^3+\alpha _{s}^4}\), \(\phi _{7}=\frac{8\alpha _{b}\beta _{s}+8\alpha _{s}\beta _{s}-2\alpha _{b}\alpha _{s}^2\beta _{s} -2\alpha _{s}^3\beta _{s}+8\beta _{s}^3+2\alpha _{b}^2\beta _{s}^2-2\alpha _{s}^2\beta _{s}^2}{16-8\alpha _{b}\alpha _{s}-8\alpha _{s}^2+\alpha _{b}^2\alpha _{s} ^2+2\alpha _{b}\alpha _{s}^3+\alpha _{s}^4}\), in which \(\phi _{6}>\overline{\phi }\), \(\phi _{7}>\overline{\phi }\).

1.2 Appendix A.2: Proof of Proposition 1

In order to satisfy the condition that the investment amount is greater than 0, the following conditions must be met: \(I<0\), \(\phi (-4\phi +\phi (\alpha _{b}+\alpha _{s})^2+2\beta _{b}^2)+(2\phi -\beta _{b}^2)\beta _{s}^2<0\), \(\phi >\frac{\beta _{b}^2}{2}\) and \(\phi >\frac{\beta _{s}^2}{2}\).

From \(I<0\), we can get: \(\phi >\phi ^{*}\).

Where \(\phi ^{*}=\frac{-\beta _{b}^2-\beta _{s}^2}{-4+\alpha _{b}\alpha _{s}+\alpha _{s}^2} +\sqrt{\frac{\beta _{b}^4-2\beta _{b}^2\beta _{s}^2+\alpha _{b}\alpha _{s}\beta _{b}^2\beta _{s} ^2+\alpha _{s}^2\beta _{b}^2\beta _{s}^2+\alpha _{s}^2\beta _{b}^2\beta _{s}^2+\beta _{s}^4}{(-4+\alpha _{b}\alpha _{s}+\alpha _{s}^2)^2}}\).

From \(\phi (-4\phi +\phi (\alpha _{b}+\alpha _{s})^2+2\beta _{b}^2)+(2\phi -\beta _{b}^2)\beta _{s}^2<0\), we can get the constraint on the marginal investment cost of VAS as: \(\phi >\phi _{1}\), where \(\phi _{1}=\frac{-\beta _{b}^2-\beta _{s}^2}{-4+\alpha _{b}^2 +2\alpha _{b}\alpha _{s}+\alpha _{s}^2}+\sqrt{\frac{\beta _{b}^4-2 \beta _{b}^2\beta _{s}^2+\alpha _{b}^2\beta _{b}^2\beta _{s}^2+2\alpha _{b} \alpha _{s}\beta _{b}^2\beta _{s}^2+\alpha _{s}^2\beta _{b}^2\beta _{s}^2+\beta _{s} ^4}{(-4+\alpha _{b}^2+2\alpha _{b}\alpha _{s}+\alpha _{s}^2)^2}}\). Among these conditions, \(\phi _{1}>\phi ^{*}\). So the final condition on cost is: \(\phi >\phi _{1}\).

$$\begin{aligned} \pi _{UBIS}^*-\pi _{IB}^*=\frac{\phi ^3\alpha _{b}^2(2\phi -\beta _{b}^2) (-2\phi +\beta _{s}^2)^2}{2(\phi (-4\phi +\phi (\alpha _{b}+\alpha _{s})^2 +2\beta _{b}^2)+(2\phi -\beta _{b}^2)\beta _{s}^2) I^2} \end{aligned}$$

With the above conditions, it can be seen that \(\pi _{UBIS}^*-\pi _{IB}^*<0\).

1.3 Appendix A.3: Proof of Proposition 2

  1. (1)

    When the platform invests their resources in bilateral users, the gaps between investment and price are as following:

    $$\begin{aligned} p_{b}^*- p_{s}^*=\frac{\phi (\phi (-2+\alpha _{s}+\alpha _{s}^2)+\beta _{s}^2)}{I}\; {\textit{and}}\; x_{b}^*-x_{s}^*=\frac{\phi \alpha _{s}\beta _{s}+\beta _{b}(-2\phi +\beta _{s}^2)}{I} \end{aligned}$$

    Since \(I<0\), only the numerator \(\phi (-2+\alpha _{s}+\alpha _{s}^2)+\beta _{s}^2\) and \(\phi \alpha _{s}\beta _{s}+\beta _{b}(-2\phi +\beta _{s}^2)\) needs to be discussed. After calculation, the following results can be obtained: when \(\frac{1}{4}(-3+\sqrt{33})\le \beta _{b}<1, 1<\frac{2\beta _{b}}{\beta _{s}}\le \alpha _{s}<1\), the numerators \(\phi (-2+\alpha _{s}+\alpha _{s}^2)+\beta _{s}^2\) and \(\phi \alpha _{s}\beta _{s}+\beta _{b}(-2\phi +\beta _{s}^2)\) in the formula \(p_{b}^*- p_{s}^*\) and \(x_{b}^*-x_{s}^*\) satisfy the condition of being greater than 0 at the same time, and also meet the conditions \(\phi >\phi ^{*}\). Other conditions that make numerators larger than 0 at the same time are too complicated. Therefore, this article does not give too much description. Similarly, when \(\beta _{s}\le \beta _{b},\ 1\le \alpha _{s}<2\), the numerator \(\phi (-2+\alpha _{s}+\alpha _{s}^2)+\beta _{s}^2\) in formula \(p_{b}^*- p_{s}^*\) satisfy the condition of being greater than 0, and the numerator \(\phi \alpha _{s}\beta _{s}+\beta _{b}(-2\phi +\beta _{s}^2)\) in formula \(x_{b}^*-x_{s}^*\) satisfy the condition of being less than 0 at the same time, the condition \(\phi >\phi ^{*}\) also need to be met. When \(\alpha _{s}\le \sqrt{\frac{\beta _{b}^2-\beta _{s}^2}{\beta _{b}^2}}, \beta _{s}<\beta _{b}\), the numerators \(\phi (-2+\alpha _{s}+\alpha _{s}^2)+\beta _{s}^2\) and \(\phi \alpha _{s}\beta _{s}+\beta _{b}(-2\phi +\beta _{s}^2)\) in the formula \(p_{b}^*- p_{s}^*\) and \(x_{b}^*-x_{s}^*\) satisfy the condition of being less than 0 at the same time, and also meet the condition \(\phi >\phi ^{*}\).

  2. (2)

    When the platform invests all their resources in sellers(\(x_{s}^*=1, x_{b}^*=0\)), the gap between price is as following:

    $$\begin{aligned} p_{b}^*-p_{s}^*=\frac{-2+\alpha _{s}+\alpha _{s}^2+(2-\alpha _{b}+\alpha _{s})\beta _{s}}{-4+\alpha _{s}(\alpha _{b}+\alpha _{s})} \end{aligned}$$

    It can be observed that the denominator is always less than 0, only the numerator \(-2+\alpha _{s}+\alpha _{s}^2+(2-\alpha _{b}+\alpha _{s})\beta _{s}\) in the formula needs to be discussed. After calculation, it can be known that the condition \(1<\alpha _{s}<2\) is met, the numerator \(-2+\alpha _{s}+\alpha _{s}^2+(2-\alpha _{b}+\alpha _{s})\beta _{s}\) is greater than 0.

  3. (3)

    When the platform invests all their resources in buyers(\(x_{s}^*=0,\ x_{b}^*=1\)), the gap between price is as following:

    $$\begin{aligned} p_{b}^*-p_{s}^*=\frac{(-2+\alpha _{s}+\alpha _{s}^2)(1+\beta _{b})}{-4+\alpha _{s}(\alpha _{b}+\alpha _{s})} \end{aligned}$$

Similarly, the denominator \(-4+\alpha _{s}(\alpha _{b}+\alpha _{s})\) is less than 0, so only the numerator \((-2+\alpha _{s}+\alpha _{s}^2)\) in formula \(p_{b}^*-p_{s}^*\) needs to be discussed. After calculation, it can be known that the condition \(0<\alpha _{b}<1\) and \(1<\alpha _{s}\) are met, the numerator \((-2+\alpha _{s}+\alpha _{s}^2)\) is greater than 0. Similarly, the condition \(0<\alpha _{b}\le 1, 0<\alpha _{b}<2\) or \(1<\alpha _{b}<2\) are met, the numerator\((-2+\alpha _{s}+\alpha _{s}^2)\) is greater than 0.

1.4 Appendix A.4: Proof of Proposition 3

Because the condition that the investment amount is greater than 0 must be satisfied, the following results can be obtained: \(\phi >\frac{\beta _{b}^2}{2}\) and \(\phi >\frac{\beta _{s}^2}{2}\).

  1. (a)

    When the buyers of platform have incomplete information and form the passive expectation: \(\partial x_{s}^{*}/\partial \alpha _{s}=\frac{\phi \beta _{s}(\phi ^2\alpha _{s}^2+(2\phi -\beta _{b}^2) (2\phi -\beta _{s}^2))}{I^2}>0\), \(\partial x_{s}^{*}/\partial \alpha _{b}=\frac{\phi ^3\alpha _{s}^2\beta _{s}}{I^2}>0\), \(\partial x_{b}^{*}/\partial \alpha _{s}=-\frac{\phi ^2(\alpha _{b}+2\alpha _{s})\beta _{b}(-2\phi +\beta _{s}^2)}{I^2}>0\) and \(\partial x_{b}^{*}/\partial \alpha _{b}=-\frac{\phi ^2\alpha _{s}\beta _{b}(-2\phi +\beta _{s}^2)}{I^2}>0\).

  2. (b)

    When the buyers of platform have incomplete information and form the passive expectation: \(\partial x_{s}^{*}/\partial \beta _{s}=\frac{\phi \alpha _{s}(-\phi ^2\alpha _{b}\alpha _{s}-\phi ^2\alpha _{s}^2+ (2\phi -\beta _{b}^2) (2\phi +\beta _{s}^2))}{I^2}\).

The condition for making the numerator \(-\phi ^2\alpha _{b}\alpha _{s}-\phi ^2\alpha _{s}^2+ (2\phi -\beta _{b}^2) (2\phi +\beta _{s}^2)\) in the formula \(\partial x_{s}^{*}/\partial \beta _{s}\) greater than 0 are \(\phi <\phi _{2}\) and \(\phi >\phi _{3}\). Where \(\phi _{2}=\frac{-\beta _{b}^2+\beta _{s}^2}{-4+\alpha _{b}\alpha _{s}+\alpha _{s}^2 }-\sqrt{\frac{\beta _{b}^4+2\beta _{b}^2\beta _{s}^2-\alpha _{s}\alpha _{b}\beta _{b}^2\beta _{s}^2 -\alpha _{s}^2\beta _{b}^2\beta _{s}^2+\beta _{s}^4}{(-4+\alpha _{b}\alpha _{s}+\alpha _{s}^2)^2}}\) and \(\phi _{3}=\frac{-\beta _{b}^2+\beta _{s}^2}{-4+\alpha _{b}\alpha _{s}+\alpha _{s}^2} +\sqrt{\frac{\beta _{b}^4+2\beta _{b}^2\beta _{s}^2-\alpha _{s}\alpha _{b}\beta _{b}^2\beta _{s} ^2-\alpha _{s}^2\beta _{b}^2\beta _{s}^2+\beta _{s}^4}{(-4+\alpha _{b}\alpha _{s}+\alpha _{s}^2)^2}}\). And it also needs to meet the condition \(\phi >\phi ^{*}\) that the investment amount is greater than 0 at the same time.

Because \(\phi ^{*}>\phi _{3}\), it can be concluded that the investment amount is greater than 0, the numerator \(-\phi ^2\alpha _{b}\alpha _{s}-\phi ^2\alpha _{s}^2+ (2\phi -\beta _{b}^2) (2\phi +\beta _{s}^2)\) in the formula \(\partial x_{s}^{*}/\partial \beta _{s}\) will also be greater than 0, then \(\partial x_{s}^{*}/\partial \beta _{s}>0\).

\(\partial x_{s}^{*}/\partial \beta _{b}=\frac{2\phi \alpha _{s}\beta _{b}\beta _{s} (2\phi -\beta _{s}^2)}{I^2}>0\), \(\partial x_{b}^{*}/\partial \beta _{s}=\frac{2\phi ^2\alpha _{s}(\alpha _{b}+\alpha _{s})\beta _{b}\beta _{s} }{I^2}>0\) and \(\partial x_{b}^{*}/\partial \beta _{b}=-\frac{(2\phi -\beta _{s}^2)(\phi (\phi (-4+\alpha _{s} (\alpha _{b}+\alpha _{s}))-2\beta _{b}^2)+(2\phi +\beta _{b}^2)\beta _{s}^2) }{I^2}\),

The condition for making the numerator \((\phi (\phi (-4+\alpha _{s}(\alpha _{b}+\alpha _{s}))-2\beta _{b}^2)+(2\phi +\beta _{b}^2)\beta _{s}^2)\) in the formula \(\partial x_{b}^{*}/\partial \beta _{b}\) less than 0 are \(\phi <\phi _{4}\) and \(\phi >\phi _{5}\).

Where \(\phi _{4}=\frac{\beta _{b}^2-\beta _{s}^2}{-4+\alpha _{b}\alpha _{s} +\alpha _{s}^2}-\sqrt{\frac{\beta _{b}^4+2\beta _{b}^2\beta _{s}^2 -\alpha _{s}\alpha _{b}\beta _{b}^2\beta _{s}^2-\alpha _{s}^2\beta _{b} ^2\beta _{s}^2+\beta _{s}^4}{(-4+\alpha _{b}\alpha _{s}+\alpha _{s}^2)^2}}\), \(\phi _{5}=\frac{\beta _{b}^2-\beta _{s}^2}{-4+\alpha _{b}\alpha _{s} +\alpha _{s}^2}+\sqrt{\frac{\beta _{b}^4+2\beta _{b}^2\beta _{s}^2 -\alpha _{s}\alpha _{b}\beta _{b}^2\beta _{s}^2-\alpha _{s}^2\beta _{b} ^2\beta _{s}^2+\beta _{s}^4}{(-4+\alpha _{b}\alpha _{s}+\alpha _{s}^2)^2}}\).

Similarly, it is calculated that \(\phi ^{*}>\phi _{5}\).

Therefore, when \(\phi >\phi ^{*}\), the numerator \((\phi (\phi (-4+\alpha _{s}(\alpha _{b}+\alpha _{s}))-2\beta _{b}^2)+(2\phi +\beta _{b}^2)\beta _{s}^2)\) in the formula \(\partial x_{b}^{*}/\partial \beta _{b}\) is less than 0, then \(\partial x_{b}^{*}/\partial \beta _{b}>0\).

1.5 Appendix A.5: Proof of Proposition 4

According to \(\partial p_{b}^{*}/\partial \alpha _{s}=\frac{\phi ^2(\phi \alpha _{b}(\phi (2+\alpha _{s}^2)-\beta _{s}^2)+2\alpha _{s}(\phi -\beta _{b}^2) (-2\phi +\beta _{s}^2)) }{I^2}\) and \(\partial p_{b}^{*}/\partial \alpha _{b}=-\frac{\phi ^3\alpha _{s} (\phi (-2+\alpha _{s}^2)+\beta _{s}^2) }{I^2}\), we can get the following conclusions.

After calculation, the following results can be obtained: when \(\alpha _{b}^{'}<\alpha _{b}\), the numerator \((\phi \alpha _{b}(\phi (2+\alpha _{s}^2)-\beta _{s}^2)+2\alpha _{s}(\phi -\beta _{b}^2) (-2\phi +\beta _{s}^2)\) in the formula \(\partial p_{b}^{*}/\partial \alpha _{s}\) is greater than 0, then \(\partial p_{b}^{*}/\partial \alpha _{s}>0\). However, when \(\alpha _{b}^{'}>\alpha _{b}\), the numerator \((\phi \alpha _{b}(\phi (2+\alpha _{s}^2)-\beta _{s}^2)+2\alpha _{s}(\phi -\beta _{b}^2) (-2\phi +\beta _{s}^2)\) in the formula \(\partial p_{b}^{*}/\partial \alpha _{s}\) is less than 0, then \(\partial p_{b}^{*}/\partial \alpha _{s}<0\).

Similarly, when \(\alpha _{s}>\sqrt{2}\), the numerator \(\phi (-2+\alpha _{s}^2)+\beta _{s}^2\) in the formula \(\partial p_{b}^{*}/\partial \alpha _{b}\) is greater than 0, then \(\partial p_{b}^{*}/\partial \alpha _{b}<0\). Other conditions are too complex to describe in this article.

\(\partial p_{s}^{*}/\partial \alpha _{s}=\frac{\phi ^4\alpha _{s}^2+\phi ^2 (2\phi -\beta _{b}^2) (2\phi -\beta _{s}^2)) }{I^2} >0\), \(\partial p_{s}^{*}/\partial \alpha _{b} =\frac{\phi ^4\alpha _{s}^2}{I^2} >0\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gui, Y., Zhai, H. & Dong, F. Value-added services decisions of bilateral platform with user expectation and resources constraint. Electron Commer Res (2023). https://doi.org/10.1007/s10660-023-09765-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10660-023-09765-7

Keywords

Navigation