Skip to main content
Log in

Radical intermediates and stable products in acrolein pyrolysis

  • Original Article
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

This article has been updated

Abstract

Acrolein is a commonly encountered pollutant of health concern, yet the processes that decompose acrolein are poorly understood. Frequently used in industrial synthesis, it is also a byproduct of combustion and other high temperature processes, especially those involving biological substances, e.g., forest fires, deep frying, or cigarette smoke. Despite the need for investigation of the chemical behavior of acrolein at high temperatures, little experimental work exists on decomposition of acrolein using apparatus capable of observing reactive species. Here, the pyrolysis of acrolein was studied at temperatures of up to 1700 K. We identified radicals and other unstable species produced in the early reaction stages, including vinyl radical, methyl radical, and methyl ketene. Detection of these reactive intermediates, and indirect evidence on the formation of others, reveals reaction pathways to stable species, including carbon monoxide, ethylene, and acetylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable

Change history

  • 24 January 2024

    Incorrect sentence In the abstract, the first sentence 'Acrolein is a commonly encountered pollutant of health concern, yet the processes that generate acrolein are poorly understood.’ Correct sentence 'Acrolein is a commonly encountered pollutant of health concern, yet the processes that decompose acrolein are poorly understood’ has been corrected.

References

  • Aghsaee M, Nativel D, Bozkurt M, Fikri M, Chaumeix N, Schulz C (2015) Experimental study of the kinetics of ethanol pyrolysis and oxidation behind reflected shock waves and in laminar flames. Proc Combust Inst 35(1):393–400

    Article  CAS  Google Scholar 

  • Arntz D, Fischer A, Höpp M, Jacobi S, Sauer J, Ohara T, Sato T, Shimizu N, Schwind H (2000) Acrolein and methacrolein. Ullmann’s Encyclopedia of Industrial Chemistry

  • Barnard J, Hughes H (1960) The pyrolysis of ethanol. Trans Faraday Soc 56:55–63

    Article  CAS  Google Scholar 

  • Bodi A (2019) i\(^2\)PEPICO Data analysis software 3.0. https://www.psi.ch/en/sls/vuv/pepico. Accessed 23 April 2023

  • Bodi A, Sztáray B, Baer T, Johnson M, Gerber T (2007) Data acquisition schemes for continuous two-particle time-of-flight coincidence experiments. Rev Sci Instrum 78(8):084102

    Article  ADS  PubMed  Google Scholar 

  • Bodi A, Hemberger P, Gerber T, Sztáray B (2012) A new double imaging velocity focusing coincidence experiment: \(i^2 PEPICO\). Rev Sci Instrum 83(8):083105

    Article  ADS  PubMed  Google Scholar 

  • Casavecchia P, Leonori F, Balucani N, Petrucci R, Capozza G, Segoloni E (2009) Probing the dynamics of polyatomic multichannel elementary reactions by crossed molecular beam experiments with soft electron-ionization mass spectrometric detection. Phys Chem Chem Phys 11(1):46–65

    Article  CAS  PubMed  Google Scholar 

  • Castro C, Rust F (1961) Thermal decomposition of acrolein. The attack of methyl and t-butoxy free radicals on acrolein. J Am Chem Soc 83(24):4928–4932

    Article  CAS  Google Scholar 

  • Chen P, Colson SD, Chupka WA, Berson JA (1986) Flash pyrolytic production of rotationally cold free radicals in a supersonic jet. Resonant multiphoton spectrum of the 3p\(^2 A^2\leftarrow X^2 A^2\) Origin band of methyl. J Phys Chem 90(11):2319–2321

    Article  CAS  Google Scholar 

  • Chin CH, Lee SH (2011) Theoretical study of isomerization and decomposition of propenal. J Chem Phys 134(4):044309

    Article  ADS  PubMed  Google Scholar 

  • Chin W, Mok C, Huang H (1990) Thermal decomposition of isomeric nitropropenes: a photoelectron spectroscopic study. J Am Chem Soc 112(6):2053–2056

    Article  CAS  Google Scholar 

  • Custodis VBF, Hemberger P, Ma ZQ, van Bokhoven JA (2014) Mechanism of fast pyrolysis of lignin: studying model compounds. J Phys Chem B 118(29):8524–8531

    Article  CAS  PubMed  Google Scholar 

  • Datta S, Davis HF (2020) Direct observation of ethylidene (\({{\rm CH}}_{3}{\rm CH}\)), the elusive high-energy isomer of ethylene. J Phys Chem Lett 11(24):10476–10481

    Article  CAS  PubMed  Google Scholar 

  • Esarte C, Peg M, Ruiz MP, Millera A, Bilbao R, Alzueta MU (2011) Pyrolysis of ethanol: gas and soot products formed. Ind Eng Chem Res 50(8):4412–4419

    Article  CAS  Google Scholar 

  • Faroon O, Roney N, Taylor J, Ashizawa A, Lumpkin M, Plewak D (2008) Acrolein environmental levels and potential for human exposure. Toxicol Ind Health 24(8):543–564

    Article  CAS  PubMed  Google Scholar 

  • Felsmann D, Moshammer K, Krüger J, Lackner A, Brockhinke A, Kasper T, Bierkandt T, Akyildiz E, Hansen N, Lucassen A, Oßwald P, Köhler M, Garcia GA, Nahon L, Hemberger P, Bodi A, Gerber T, Kohse-Höinghaus K (2015) Electron ionization, photoionization and photoelectron/photoion coincidence spectroscopy in mass-spectrometric investigations of a low-pressure ethylene/oxygen flame. Proc Combust Inst 35(1):779–786

    Article  CAS  Google Scholar 

  • Guan Q, Urness KN, Ormond TK, David DE, Barney Ellison G, Daily JW (2014) The properties of a micro-reactor for the study of the unimolecular decomposition of large molecules. Int Rev Phys Chem 33(4):447–487

    Article  CAS  Google Scholar 

  • Hashemi H, Christensen JM, Glarborg P (2018) High-pressure pyrolysis and oxidation of ethanol. Fuel 218:247–257

    Article  CAS  Google Scholar 

  • Hemberger P, van Bokhoven JA, Pérez-Ramírez J, Bodi A (2020) New analytical tools for advanced mechanistic studies in catalysis: photoionization and photoelectron photoion coincidence spectroscopy. Catal Sci Technol 10:1975–1990

    Article  CAS  Google Scholar 

  • Hemberger P, Bodi A, Bierkandt T, Köhler M, Kaczmarek D, Kasper T (2021) Photoelectron photoion coincidence spectroscopy provides mechanistic insights in fuel synthesis and conversion. Energy Fuels 35(20):16265–16302

    Article  CAS  Google Scholar 

  • Hemberger P, Wu X, Pan Z, Bodi A (2022) Continuous pyrolysis microreactors: hot sources with little cooling? New insights utilizing cation velocity map imaging and threshold photoelectron spectroscopy. J Phys Chem A 126(14):2196–2210

    Article  CAS  PubMed  Google Scholar 

  • Johansson K, Head-Gordon M, Schrader P, Wilson K, Michelsen H (2018) Resonance-stabilized hydrocarbon-radical chain reactions may explain soot inception and growth. Science 361(6406):997–1000

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  • Johnson M, Bodi A, Schulz L, Gerber T (2009) Vacuum ultraviolet beamline at the Swiss light source for chemical dynamics studies. Nucl Instrum Methods Phys Res Sect A 610(2):597–603

    Article  ADS  CAS  Google Scholar 

  • Krasutsky SG, Jacobo SH, Tweedie SR, Krishnamoorthy R, Filatov AS (2015) Route optimization and synthesis of taxadienone. Organ Process Res Dev 19(1):284–289

    Article  CAS  Google Scholar 

  • Li J, Kazakov A, Dryer FL (2001) Ethanol pyrolysis experiments in a variable pressure flow reactor. Int J Chem Kinet 33(12):859–867

    Article  CAS  Google Scholar 

  • Linstrom P, Mallard WE (2023) NIST Chemistry WebBook, NIST Standard Reference Database Number 69, chapter “Ionization Energy Evaluation” by Sharon G. Lias. National Institute of Standards and Technology, Gaithersburg MD, 20899

  • Liu L, Ye XP, Bozell JJ (2012) A comparative review of petroleum-based and bio-based acrolein production. Chemsuschem 5(7):1162–1180

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay DP, Schleier D, Fischer I, Loison J-C, Alcaraz C, Garcia GA (2020) Photoelectron spectroscopy of boron-containing reactive intermediates using synchrotron radiation: \(\text{ BH}_{2}\), BH, and BF. Phys Chem Chem Phys 22:1027–1034

    Article  CAS  PubMed  Google Scholar 

  • Nguyen MT, Matus MH, Lester WA, Dixon DA (2008) Heats of formation of triplet ethylene, ethylidene, and acetylene. J Phys Chem A 112(10):2082–2087

    Article  CAS  PubMed  Google Scholar 

  • Osborn DL, Hayden CC, Hemberger P, Bodi A, Voronova K, Sztáray B (2016) Breaking through the false coincidence barrier in electron-ion coincidence experiments. J Chem Phys 145(16):164202

    Article  ADS  PubMed  Google Scholar 

  • OSHA (2023) Acrolein exposure limits. https://www.osha.gov/chemicaldata/51. Accessed 23 April 2023

  • Oßwald P, Hemberger P, Bierkandt T, Akyildiz E, Köhler M, Bodi A, Gerber T, Kasper T (2014) In situ flame chemistry tracing by imaging photoelectron photoion coincidence spectroscopy. Rev Sci Instrum, 85(2)

  • Pham TV, TueTrang HT (2020) Combination reactions of propargyl radical with hydroxyl radical and the isomerization and dissociation of trans-propenal. J Phys Chem A 124(30):6144–6157

    Article  CAS  PubMed  Google Scholar 

  • Reizer E, Viskolcz B, Fiser B (2021) Formation and growth mechanisms of polycyclic aromatic hydrocarbons: a mini-review. Chemosphere 261:132793

    Google Scholar 

  • Rice FO, Glasebrook AL (1934) The thermal decomposition of organic compounds from the standpoint of free radicals. VII. The ethylidene radical. J Am Chem Soc 56(3):741–743

    Article  CAS  Google Scholar 

  • Rotzoll G (1985) High-temperature pyrolysis of ethanol. J Anal Appl Pyrol 9(1):43–52

    Article  CAS  Google Scholar 

  • Ruscic B, Bross D (2022) Active Thermocemical Tables (ATcT) values based on ver. 1.124 of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois; available at ATcT.anl.gov. Accessed 23 April 2023

  • Scharko NK, Oeck AM, Tonkyn RG et al (2019) Identification of gas-phase pyrolysis products in a prescribed fire: first detections using infrared spectroscopy for naphthalene, methyl nitrite, allene, acrolein and acetaldehyde. Atmos Meas Tech 12(1):763–776

    Article  CAS  Google Scholar 

  • Shen C, Zhang IY, Fu G, Xu X (2013) Pyrolysis of D-glucose to acrolein. Chin J Chem Phys 24(3):249

    Article  Google Scholar 

  • Stein YS, Antal MJ Jr, Jones M Jr (1983) A study of the gas-phase pyrolysis of glycerol. J Anal Appl Pyrol 4(4):283–296

    Article  CAS  Google Scholar 

  • Sun J, Zhu Y, Chen JT, Konnov AA, Li T, Yang L, Zhou CW (2022) From electronic structure to combustion model application for acrolein chemistry Part II: acrolein + \({{\rm HO}}_{2}\) reactions and the development of acrolein sub-mechanism. Combust Flame 251:112321

    Article  Google Scholar 

  • Sun J, Zhu Y, Konnov AA, Zhou CW (2022b) From electronic structure to combustion model application for acrolein chemistry part I: acrolein + H reactions and related chemistry. Combust Flame 240:111825

    Article  CAS  Google Scholar 

  • Sztáray B, Voronova K, Torma KG, Covert KJ, Bodi A, Hemberger P, Gerber T, Osborn DL (2017) CRF-PEPICO: double velocity map imaging photoelectron photoion coincidence spectroscopy for reaction kinetics studies. J Chem Phys 147(1):013944

    Article  ADS  PubMed  Google Scholar 

  • Urness KN (2014) A molecular picture of biofuel decomposition: Pyrolysis of furan and select furanics. PhD thesis, University of Colorado at Boulder

  • Vasiliou AK, Piech KM, Reed B, Zhang X, Nimlos MR, Ahmed M, Golan A, Kostko O, Osborn DL, David DE, Urness KN, Daily JW, Stanton JF, Ellison GB (2012) Thermal decomposition of \({{\rm CH}}_{3}{\rm CHO}\) studied by matrix infrared spectroscopy and photoionization mass spectroscopy. J Chem Phys 137(16):164308

    Article  ADS  PubMed  Google Scholar 

  • Zádor J, Miller JA (2015) Adventures on the \({{\rm C}}_{3}{{\rm H}}_{5}{\rm O}\) potential energy surface: \({\rm OH}\) + propyne, \({\rm OH}\) + allene and related reactions. Proc Combust Inst 35(1):181–188

    Article  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 848668) and from the Israel Science Foundation (ISF), Grant No. 194/20.

Author information

Authors and Affiliations

Authors

Contributions

NG-D and JHB were the main contributors to the study conception and design. Material preparation and data collection were performed by NG-D, DF, SHL, UZ, IR and PH. The data analysis was performed by MM. The first draft of the manuscript was written by MM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Joshua H. Baraban.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In the original publication of the article, in the Abstract first line “Acrolein is a commonly encountered health hazard and pollutant” and in the reference Chen P was 3p2A2← X2A2incorrectly published, now it has been corrected here.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 3258 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muzika, M., Genossar-Dan, N., Fux, D. et al. Radical intermediates and stable products in acrolein pyrolysis. Environ Chem Lett 22, 491–497 (2024). https://doi.org/10.1007/s10311-023-01661-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-023-01661-8

Keywords

Navigation