Skip to main content
Log in

Phenomenological modeling of memristor fabricated by screen printing based on the structure of Ag/polymer/Cu

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The attributes of memristors such as their non-volatile nature, simple structure, no leakage current, and fast switching speed present enormous opportunities for various analog and digital applications. It is imperative to develop an accurate physical model of the memristor in order to design digital applications. Hitherto published memristor modeling approaches do not match the practical memristor dynamics. In this work, a new model is developed by considering Schottky contact at the metal–insulator–metal (MIM) interfaces, and a novel memristor is fabricated to validate the proposed model. A bead polymer based on methyl methacrylate and n-butyl methacrylate (MMBM) is first used to explore the resistive switching properties of the device. A cost-effective screen printing technique is demonstrated to deposit the resistive switching layer for the fabrication of the memristor. The resistive switching behavior is observed in the sandwiched layer with a silver (Ag) top electrode and copper (Cu) bottom electrode. The surface morphology and electrical characteristics of the fabricated device are investigated by scanning electron microscopy and two-point probe resistivity measurement. The results confirm the formation of the Schottky barriers at the MIM interfaces of the fabricated device. The proposed model is compared with the device described in this paper having an error of 0.7609 (in terms of the relative root-mean-square error). Moreover, a NOR logic gate is simulated for the circuit simulation of the proposed model. This will pave the way for new digital design applications based on the memristor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Rosso, D.: Annual semiconductor sales increase 21.6 percent, top \$400 billion for first time. Semiconductor Industry Association (February, 2018) 1, (2018)

  2. Hoddeson, L., Riordan, M.: The invention of the transistor and the birth of the information age (1998)

  3. Weste, N.H., Harris, D.: CMOS VLSI design: a circuits and systems perspective (Pearson Education India, 2015)

  4. Singh, T., Rangarajan, S., John, D., Schreiber, R., Oliver, S., Seahra, R., Schaefer, A.: in 2020 IEEE International Solid-State Circuits Conference-(ISSCC) (IEEE, 2020), pp. 42–44

  5. Rairigh, D.: Limits of cmos technology scaling and technologies beyond-cmos. Institute of Electrical and Electronics Engineers, Inc (2005)

  6. Narendra, S.G., Chandrakasan, A.P.: Leakage in nanometer CMOS technologies (Springer Science & Business Media, 2006)

  7. Roy, K., Mukhopadhyay, S., Mahmoodi-Meimand, H.: Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE 91(2), 305–327 (2003)

    Article  Google Scholar 

  8. Graves, C.E., Li, C., Sheng, X., Miller, D., Ignowski, J., Kiyama, L., Strachan, J.P.: In-memory computing with memristor content addressable memories for pattern matching. Adv. Mater. 32(37), 2003437 (2020)

    Article  Google Scholar 

  9. Im, I.H., Kim, S.J., Jang, H.W.: Memristive devices for new computing paradigms. Adv. Intell. Syst. 2(11), 2000105 (2020)

    Article  Google Scholar 

  10. Halawani, Y., Mohammad, B., Homouz, D., Al-Qutayri, M., Saleh, H.(2015): Modeling and optimization of memristor and stt-ram-based memory for low-power applications. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 24(3):100314

  11. Chua, L.: Memristor-the missing circuit element. IEEE Transactions on circuit theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  12. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. nature 453(7191), 80–83 (2008)

    Google Scholar 

  13. Murali, S., Rajachidambaram, J.S., Han, S.Y., Chang, C.H., Herman, G.S., Conley, J.F., Jr.: Resistive switching in zinc-tin-oxide. Solid-state electronics 79, 248–252 (2013)

    Google Scholar 

  14. Thangamani, V.: Memristor-based resistive random access memory: hybrid architecture for low power compact memory design. Control Theory and Informatics 4(7), 7–14 (2014)

    Google Scholar 

  15. Liang, Y., Lu, Z., Wang, G., Dong, Y., Yu, D., Iu, H.H.C.: Modeling simplification and dynamic behavior of n-shaped locally-active memristor based oscillator. IEEE Access 8, 75571–75585 (2020)

    Article  Google Scholar 

  16. Gale, E.: in Advances in Unconventional Computing (Springer, 2017), pp. 497–542

  17. Zhang, T., Haider, M.R.: A schmitt trigger based oscillatory neural network for reservoir computing. Journal of Electrical and Electronic Engineering 8(1), 1–9 (2020)

    Google Scholar 

  18. Muthuswamy, B.: Implementing memristor based chaotic circuits. International Journal of Bifurcation and Chaos 20(05), 1335–1350 (2010)

    Article  MATH  Google Scholar 

  19. Yin, L., Cheng, R., Wang, Z., Wang,F., Sendeku, M.G., Wen, Y., Zhan, X., He, J.: Two-dimensional unipolar memristors with logic and memory functions. Nano Letters (2020)

  20. Mazumder, P., Kang, S.M., Waser, R.: Memristors: devices, models, and applications. Proc. IEEE 100(6), 1911–1919 (2012)

    Article  Google Scholar 

  21. Yao, X., Liu, X., Zhong, S.: Exponential stability and synchronization of memristor-based fractional-order fuzzy cellular neural networks with multiple delays. Neurocomputing (2020)

  22. Lu, L., Yang, X., Wang, W., Yu, Y.: Recursive second-order Volterra filter based on Dawson function for chaotic memristor system identification. Nonlinear Dynamics pp. 1–20 (2020)

  23. Mladenov, V., Kirilov, S.: A nonlinear drift memristor model with a modified biolek window function and activation threshold. Electronics 6(4), 77 (2017)

    Article  Google Scholar 

  24. Rziga, F.O., Mbarek, K., Ghedira, S., Besbes, K.: An efficient verilog-a memristor model implementation: simulation and application. J. Comput. Electron. 18(3), 1055–1064 (2019)

    Article  Google Scholar 

  25. Zhang, X., Long, K.: Improved learning experience memristor model and application as neural network synapse. IEEE Access 7, 15262–15271 (2019)

    Article  Google Scholar 

  26. Ascoli, A., Corinto, F., Senger, V., Tetzlaff, R.: Memristor model comparison. IEEE Circuits Syst. Mag. 13(2), 89–105 (2013)

    Article  Google Scholar 

  27. Isah, A., Nguetcho, A.S.T., Binczak, S., Bilbault, J.M.: Comparison of the performance of the memristor models in 2d cellular nonlinear network. Electronics 10(13), 1577 (2021)

    Article  Google Scholar 

  28. Gao, L., Ren, Q., Sun, J., Han, S.T., Zhou, Y.: Memristor modeling: Challenges in theories, simulations, and device variability. J. Mater. Chem. C 9(47), 16859–84 (2021)

    Article  Google Scholar 

  29. Duan, W.: All inorganic and transparent ito/boehmite/ito structure by one-step synthesis method for flexible memristor. Solid-State Electron. 186, 108180 (2021)

    Article  Google Scholar 

  30. Prezioso, M., Merrikh-Bayat, F., Hoskins, B., Adam, G.C., Likharev, K.K., Strukov, D.B.: Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521(7550), 61–64 (2015)

    Article  Google Scholar 

  31. Yan, K., Peng, M., Yu, X., Cai, X., Chen, S., Hu, H., Chen, B., Gao, X., Dong, B., Zou, D.: High-performance perovskite memristor based on methyl ammonium lead halides. J. Mater. Chem. C 4(7), 1375–1381 (2016)

    Article  Google Scholar 

  32. Awais, M.N., Muhammad, N.M., Navaneethan, D., Kim, H.C., Jo, J., Choi, K.H.: Fabrication of zro2 layer through electrohydrodynamic atomization for the printed resistive switch (memristor). Microelectron. Eng. 103, 167–172 (2013)

    Article  Google Scholar 

  33. Awais, M.N., Choi, K.H.: Resistive switching and current conduction mechanism in full organic resistive switch with the sandwiched structure of poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate)/poly (4-vinylphenol)/poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate). Electron. Mater. Lett. 10(3), 601–606 (2014)

    Article  Google Scholar 

  34. Zhao, X., Xu, H., Wang, Z., Lin, Y., Liu, Y.: Memristors with organic-inorganic halide perovskites. InfoMat 1(2), 183–210 (2019)

    Article  Google Scholar 

  35. Lupo, F., Scirè, D., Mosca, M., Crupi, I., Razzari, L., Macaluso, R.: Custom measurement system for memristor characterisation. Solid-State Electron. 186, 108049 (2021)

    Article  Google Scholar 

  36. Kügeler, C., Meier, M., Rosezin, R., Gilles, S., Waser, R.: High density 3d memory architecture based on the resistive switching effect. Solid-State Electron. 53(12), 1287–1292 (2009)

    Article  Google Scholar 

  37. Prodromakis, T., Peh, B.P., Papavassiliou, C., Toumazou, C.: A versatile memristor model with nonlinear dopant kinetics. IEEE Trans. Electron. Dev. 58(9), 3099–3105 (2011)

    Article  Google Scholar 

  38. Biolek, Z., Biolek, D., Biolkova, V.: Spice model of memristor with nonlinear dopant drift. Radioengineering, 18(2) (2009)

  39. Joglekar, Y.N., Wolf, S.J.: The elusive memristor: properties of basic electrical circuits. Eur. J. Phys. 30(4), 661 (2009)

    Article  MATH  Google Scholar 

  40. Lehtonen, E., Laiho, M.: In 2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010) (IEEE, 2010), pp. 1–4

  41. Pickett, M.D., Strukov, D.B., Borghetti, J.L., Yang, J.J., Snider, G.S., Stewart, D.R., Williams, R.S.: Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106(7), 074508 (2009)

    Article  Google Scholar 

  42. Kvatinsky, S., Friedman, E.G., Kolodny, A., Weiser, U.C.: Team: Threshold adaptive memristor model. IEEE Trans. Circuits Syst. I Regul. Pap. 60(1), 211–221 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kvatinsky, S., Wald, N., Satat, G., Kolodny, A., Weiser, U.C., Friedman, E.G.: in 2012 13th International Workshop on Cellular Nanoscale Networks and their Applications (IEEE, 2012), pp. 1–6

  44. Muhammad, N.M., Duraisamy, N., Rahman, K., Dang, H.W., Jo, J., Choi, K.H.: Fabrication of printed memory device having zinc-oxide active nano-layer and investigation of resistive switching. Curr. Appl. Phys. 13(1), 90–96 (2013)

    Article  Google Scholar 

  45. Yang, J.J., Kobayashi, N.P., Strachan, J.P., Zhang, M.X., Ohlberg, D.A., Pickett, M.D., Li, Z., Medeiros-Ribeiro, G., Williams, R.S.: Dopant control by atomic layer deposition in oxide films for memristive switches. Chem. Mater. 23(2), 123–125 (2011)

    Article  Google Scholar 

  46. Kim, H., McIntyre, P.C., On Chui, C., Saraswat, K.C., Stemmer, S.: Engineering chemically abrupt high-k metal oxide/ silicon interfaces using an oxygen-gettering metal overlayer. J. Appl. Phys. 96(6), 3467–3472 (2004)

    Article  Google Scholar 

  47. Lin, C.Y., Wu, C.Y., Wu, C.Y., Hu, C., Tseng, T.Y.: Bistable resistive switching in al2o3 memory thin films. J. Electrochem. Soc. 154(9), G189 (2007)

    Article  Google Scholar 

  48. Yang, M.K., Park, J.W., Ko, T.K., Lee, J.K.: Bipolar resistive switching behavior in ti/mno2/pt structure for nonvolatile memory devices. Appl. Phys. Lett. 95(4), 042105 (2009)

    Article  Google Scholar 

  49. Huang, C.H., Huang, J.S., Lin, S.M., Chang, W.Y., He, J.H., Chueh, Y.L.: Zno1-x nanorod arrays/zno thin film bilayer structure: from homojunction diode and high-performance memristor to complementary 1d1r application. ACS Nano 6(9), 8407–8414 (2012)

    Article  Google Scholar 

  50. Schindler, C., Thermadam, S.C.P., Waser, R., Kozicki, M.N.: Bipolar and unipolar resistive switching in cu-doped \(sio_{2}\). IEEE Trans. Electron. Dev. 54(10), 2762–2768 (2007)

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Naeem Awais.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zafar, M., Awais, M.N., Shehzad, M.N. et al. Phenomenological modeling of memristor fabricated by screen printing based on the structure of Ag/polymer/Cu. J Comput Electron 22, 1735–1747 (2023). https://doi.org/10.1007/s10825-023-02104-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-023-02104-x

Keywords

Navigation