Skip to main content
Log in

Searching for a secular variation of the gravitational constant using strong gravitational fields

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Searching for variations in dimensionless physical constants presents a meaningful characteristic in experimental and observational studies. One of the most valuable explorations of these variations could depend on the evolution of white dwarf stars. By analyzing the spectrum of the white dwarf star G191-B2B, we derive a robust limit on the cosmological variation of the gravitational constant: \(\dot{\mathrm{G}}/\mathrm{G}=(0.238\pm 2.959)\times {10}^{-15}{\mathrm{yr}}^{-1}\). This limit proposes a potential test of the framework of modern unification theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data used or analysed in this study are included in the Table 1.

References

  1. Dirac, P.A.M.: The cosmological constants. Nature 139, 323–323 (1937)

    Article  ADS  MATH  Google Scholar 

  2. Uzan, J.: The fundamental constants and their variation: observational and theoretical status. Rev. Mod. Phys. 75, 403 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. García-Berro, E., Isem, J., Kubyshin, Y.A.: Astronomical measurements and constraints on the variability of fundamental constants. Astron. Astrophys. Rev. 14, 113–170 (2007)

    Article  ADS  Google Scholar 

  4. Mohr, P.J., Taylor, B.N., Newell, D.B.: CODATA recommended values of the fundamental physical constants: 2006*. Rev. Mod. Phys. 80, 633 (2008)

    Article  ADS  Google Scholar 

  5. Reisenegger, A., Jofré, P., Fernández, R.: Constraining a possible time-variation of the gravitational constant through ‘gravitochemical heating’ of neutron stars. Phys. Rev. Lett. 97, 131102 (2009)

    Google Scholar 

  6. Rich, R.: Experimental consequences of time variations of the fundamental constants. Am. J. Phys. 71, 1043 (2003)

    Article  ADS  Google Scholar 

  7. Rocha, G., et al.: Measuring α in the early Universe: cosmic microwave background polarization, re-ionization and the Fisher matrix analysis. Mon. Not. R. Astron. Soc. 352, 20–38 (2004)

    Article  ADS  Google Scholar 

  8. Sandvik, H.B., Barrow, J.D., Magueijo, J.: A simple cosmology with a varying fine structure constant. Phys. Rev. Lett. 88, 031302 (2002)

    Article  ADS  Google Scholar 

  9. Scóccola, C.G., Landau, S.J., Vucetich, H.: WMAP 5-year constraints on time variation of α and me in a detailed recombination scenario. Phys. Lett. B 669, 212–216 (2008)

    Article  ADS  Google Scholar 

  10. Shaw, D.J., Barrow, J.D.: Varying couplings in electroweak theory. Phys. Rev. D 71, 063525 (2005)

    Article  ADS  Google Scholar 

  11. Shaw, D.J., Barrow, J.D.: Local experiments see cosmologically varying constants. Phys. Lett. B 639, 596–599 (2006)

    Article  ADS  Google Scholar 

  12. Shelkovnikov, A., et al.: Stability of the proton-to electron mass ratio. Phys. Rev. Lett. 100, 150801 (2008)

    Article  ADS  Google Scholar 

  13. Sigurdson, K., Kurylov, A., Kamionkowski, M.: Spatial variation of the fine-structure parameter and the cosmic microwave background. Phys. Rev. D 68, 103509 (2003)

    Article  ADS  Google Scholar 

  14. García-Berro, E., et al.: An upper limit to the secular variation of the gravitational constant from white dwarf stars. J. Cos. Astro. Phys 5, 21 (2011)

    Article  ADS  Google Scholar 

  15. Damour, T., Gibbons, G.W., Taylor, J.H.: Limits on the variability of G using binary-pulsar data. Phys. Rev. Lett. 61, 1151 (1988)

    Article  ADS  Google Scholar 

  16. Avelino, P.P., Martins, C.J.A.P.: Linearized Bekenstein varying alpha models. Phys. Rev. D 64, 103505 (2004)

    Article  ADS  Google Scholar 

  17. Webb, J.K., et al.: Search for time variation of the fine structure constant. Phys. Rev. Lett. 82, 884 (1999)

    Article  ADS  Google Scholar 

  18. Hofmann, F., Muller, J., Biskupek, L.: Lunar laser ranging test of the Nordtvedt parameter and a possible variation in the gravitational constant. Astron. Astrophys. 5, 522 (2010)

    MATH  Google Scholar 

  19. Copi, C.J., Davis, A.N., Krauss, L.M.: New Nucleosynthesis Constraint on the Variation of G. Phys. Rev. Lett. 92, 171301 (2004)

    Article  ADS  Google Scholar 

  20. Bambi, C., Giannotti, M., Villante, F.L.: Response of primordial abundances to a general modification of GN and/or of the early universe expansion rate. Phys. Rev. D 71, 123524 (2005)

    Article  ADS  Google Scholar 

  21. Gaztanaga, E., et al.: Bounds on the possible evolution of the gravitational constant from cosmological type Ia supernovae. Phys. Rev. D 65, 023506 (2002)

    Article  ADS  Google Scholar 

  22. García-Berro, E., Kubyshin, Y., Loren-Aguilar, P., Isern, J.: The variation of the gravitational constant inferred from the hubble diagram of type ia supernovae. Int. J. Mod. Phys. D 15, 1163–1174 (2006)

    Article  ADS  MATH  Google Scholar 

  23. Benvenuto, O.G., Garcia-Berro, E., Isern, J.: Asteroseismological bound on Ġ/G from pulsating white dwarfs. Phys. Rev. D 69, 082002 (2004)

    Article  ADS  Google Scholar 

  24. Biesiada, M., Malec, B.: A new white dwarf constraint on the rate of change of the gravitational constant. Mon. Not. Roy. Astron. Soc 350, 644–648 (2004)

    Article  ADS  Google Scholar 

  25. Magueijo, J., Barrow, I.D., Sandvik, H.B.: Is it e or is it c? Experimental tests of varying alpha. Phys. Lett. B 549, 284–289 (2002)

    Article  ADS  Google Scholar 

  26. Jamil, M., Saridakis, E.N., Setare, M.: Holographic dark energy with varying gravitational constant. Phys. Lett. B 679, 172–176 (2009)

    Article  ADS  Google Scholar 

  27. Kostelecky, V.A., Potting, R.: CPT, strings, and meson factories. Phys. Rev. D. 51, 3923 (1995)

    Article  ADS  Google Scholar 

  28. Webb, J.K., et al.: Further evidence for cosmological evolution of the fine structure constant. Phys. Rev. Lett. 87, 091301 (2011)

    Article  ADS  Google Scholar 

  29. Le, T.D.: White dwarf spectra for studies of time variation of the fine structure constant. Braz. J. Phys. 49, 256–261 (2019)

    Article  ADS  Google Scholar 

  30. Le, T.D.: Wavelengths of [Fe II] from quasar J110325–264515 for a study of space-time variations in the fine-structure constant. Results Phys. 12, 1035–1037 (2019)

    Article  ADS  Google Scholar 

  31. Le, T.D.: A search for the space-time variations in the proton-to-electron mass ratio using the [Fe II] transitions. Chin. J. Phys. 62, 252–257 (2019)

    Article  Google Scholar 

  32. Le, T.D.: A test of cosmological space–time variation of the gravitational constant with strong gravitational fields. Chin. J. Phys. 73, 147–153 (2021)

    Article  Google Scholar 

  33. Berengut, J.C., et al.: Limits on the dependence of the fine-structure constant on gravitational potential from white-dwarf spectra. Phys. Rev. Lett. 111, 010801 (2013)

    Article  ADS  Google Scholar 

  34. Ong, A., Berengut, J.C., Flambaum, V.V.: 2013 Measuring chemical evolution and gravitational dependence of α using ultraviolet Fe v and Ni v transitions in white-dwarf spectra. Phys. Rev. A 88, 052517 (2013)

    Article  ADS  Google Scholar 

  35. Martins, C.J.A.P.: The status of varying constants: a review of the physics, searches and implications. Rep. Prog. Phys. 80, 126902 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  36. Campbell, B.A., Olive, K.A.: Nucleosynthesis and the time dependence of fundamental couplings. Phys. Lett. B 345, 429–434 (1995)

    Article  ADS  Google Scholar 

  37. García-Berro, E., et al.: A white dwarf cooling age of 8 Gyr for NGC 6791 from physical separation processes. Nature 465, 194–196 (2010)

    Article  ADS  Google Scholar 

  38. Althaus, L.G., Corsico, A.H., Torres, S., Loren-Aguilar, P., Isern, J.: The evolution of white dwarfs with a varying gravitational constant. Astron. Astrophys. 527, A72 (2011)

    Article  ADS  Google Scholar 

  39. Wetterich, C.: Growing neutrinos and cosmological selection. Phys. Lett. B 655, 201–208 (2007)

    Article  ADS  Google Scholar 

  40. Le, T.D.: A study of space–time variation of the gravitational constant using high-resolution quasar spectra. Gen. Relativ. Gravit. 53, 37 (2021)

    Article  ADS  MATH  Google Scholar 

  41. Bellinger, E.P., Christensen-Dalsgaard, J.: Asteroseismic constraints on the cosmic-time variation of the gravitational constant from an ancient main-sequence star. Astrophys. J. 887, L1 (2019)

    Article  ADS  Google Scholar 

  42. García-Berro, E., et al.: White dwarf constraints on a varying G. Mem. S. A. It 85, 118–123 (2014)

    ADS  Google Scholar 

  43. García-Berro, E., et al.: The rate of change of the gravitational constant and the cooling of white dwarfs. Mon. Not. Roy. Astron. Soc 277, 801–810 (1995)

    Article  ADS  Google Scholar 

  44. Yunes, N., Pretorius, F., Spergel, D.: Constraining the evolutionary history of Newton’s constant with gravitational wave observations. Phys. Rev. D 81, 064018 (2010)

    Article  ADS  Google Scholar 

  45. Damour, T., Taylor, J.H.: On the orbital period change of the binary pulsar PSR 1913+16. Astrophys. J. 366, 501–511 (1991)

    Article  ADS  Google Scholar 

  46. Kaspi, V.M., Taylor, J.H.: High-precision timing of millisecond pulsars. III. long-term monitoring of PSRs B1855+09 and B1937+21. Astrophys. J. 428, 713 (1994)

    Article  ADS  Google Scholar 

  47. Guenther, D.B., Krauss, L.M., Demarque, P.: Testing the constancy of the gravitational constant using helioseismology. Astrophys. J. 498, 871–876 (1998)

    Article  ADS  Google Scholar 

  48. Thorsett, S.E.: The gravitational constant, the chandrasekhar limit, and neutron star masses. Phys. Rev. Lett. 77, 1432 (1996)

    Article  ADS  Google Scholar 

  49. Anderson, J.D., Schubert, G., Trimble, V., Feldman, M.R.: Measurements of Newton’s gravitational constant and the length of day. Eur. Phys. Lett 110, 10002 (2015)

    Article  ADS  Google Scholar 

  50. Jianbo, L., Saridakis, E.N., Setare, M.R., Xu, L.: Observational constraints on holographic dark energy with varying gravitational constant. J. Cos. Astro. Phys 31, 1003 (2010)

    Google Scholar 

  51. Levshakov, S.A., et al.: Search for chameleon-like scalar fields with the ammonia method. Astron. Astrophys. 512, A44 (2010)

    Article  Google Scholar 

  52. Levshakov, S.A., et al.: Searching for chameleon-like scalar fields with the ammonia method*. Astron. Astrophys. 524, A32 (2010)

    Article  Google Scholar 

  53. Truppe, S., et al.: A search for varying fundamental constants using hertz-level frequency measurements of cold CH molecules. Nature. Com 4, 2600 (2013)

    Article  ADS  Google Scholar 

  54. Verbiest, J.P.W., et al.: Precision timing of PSR J0437–4715: an accurate pulsar distance, a high pulsar mass, and a limit on the variation of newton’s gravitational constant. Astrophys. J. 679, 675–680 (2008)

    Article  ADS  Google Scholar 

  55. Lorén-Aguilar, P., et al.: Time variation of G and α within models with extra dimensions. Class. Quant. Grav. 20, 3885–3896 (2003)

    Article  ADS  MATH  Google Scholar 

  56. Le, T.D.: 2021 New limit on space-time variation of the proton-to-electron mass ratio using high-resolution spectra of white dwarf stars. J. High Energy Astrophys. 29, 43–46 (2021)

    Article  ADS  Google Scholar 

  57. Clara, M.T., et al.: Black holes, gravitational waves and fundamental physics: a roadmap. Class. Quantum. Grav. 36, 143001 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  58. Will, C.M.: The confrontation between general relativity and experiment. Living. Rev. Rel. 4, 4 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  59. Uzan, J.P.: Fundamental constants and tests of general relativity—theoretical and cosmological considerations. Space Sci. Rev. 148, 249 (2010)

    Article  ADS  Google Scholar 

  60. Bronnikov, K.A.: On the variations of G in the geometric scalar theory of gravity. Eur. Phys. J. C. 84, 434 (2020)

    Article  ADS  Google Scholar 

  61. Aditya, V., et al.: Constraints on the time variation of the gravitational constant using gravitational wave observations of binary neutron stars. Phys. Rev. Lett. 126, 141104 (2021)

    Article  ADS  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

T.D.L.: Conceptualization, methodology, investigation, visualization, resources, formal analysis, Writing—original draft, writing—review & editing.

Corresponding author

Correspondence to T. D. Le.

Ethics declarations

Competing interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, T.D. Searching for a secular variation of the gravitational constant using strong gravitational fields. Gen Relativ Gravit 55, 124 (2023). https://doi.org/10.1007/s10714-023-03173-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03173-w

Keywords

Navigation