Skip to main content
Log in

Slowly-rotating compact objects: the nonintegrability of Hartle–Thorne particle geodesics

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

X-ray astronomy provides information regarding the electromagnetic emission of active galactic nuclei and X-ray binaries. These events provide details regarding the astrophysical environment of black holes and stars, and help us understand gamma-ray bursts. They produce estimates for the maximum mass of neutron stars and eventually will contribute to the discovery of their equation of state. Thus, it is crucial to study these configurations in order to enhance the yield of X-ray astronomy when combined with multimessenger gravitational-wave astrophysics and black hole shadows. Nevertheless, an exact solution of the field equations does not exist for rotating neutron stars. There exist a variety of approximate solutions for compact objects that may characterize relativistic stars. The most studied approximation is the Hartle–Thorne metric that represents slowly-rotating compact objects, like massive stars, white dwarfs and neutron stars. Recent investigations of photon orbits and shadows of such metric revealed that it exhibits chaos close to resonances. Here, we thoroughly investigate particle orbits around the Hartle–Thorne spacetime up to second order in rotation. We perform an exhaustive analysis of bound motion, by varying all parameters involved in the system. We demonstrate that chaotic regions, known as Birkhoff islands, form around resonances, where the ratio of the radial and polar frequency of geodesics, known as the rotation number, is shared throughout the island. This leads to the formation of plateaus in rotation curves during the most prominent 2/3 resonance, which confirms that generic geodesics are nonintegrable. We measure their width and show how each parameter affects it. The nonintegrability of Hartle–Thorne metric may affect quasiperiodic oscillations of low-mass X-ray binaries, when chaos is taken into account, and might potentially improve estimates of mass, angular momentum and multipole moments of astrophysical compact objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availibility

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Notes

  1. In higher order perturbative solutions, further deformation parameters are introduced from the perturbative field equations, see e.g. the discussion in Section 6 of [83], where, besides the mass quadrupole, the spin-octupole parameter of the \({\mathcal {O}}(\Omega ^3)\) HT metric also deviates from Kerr’s spin octupole.

  2. Even though we will not be dealing with GW emission in this work, one can tranform from proper to coordinate time t with a simple chain rule such that \(r^\prime =dr/dt=(dr/d\tau )(d\tau /dt)={\dot{r}}/{\dot{t}}\).

References

  1. Taylor, J.H., Fowler, L.A., McCulloch, P.M.: Measurements of general relativistic effects in the binary pulsar PSR 1913+16. Nature 277, 437 (1979)

    Article  ADS  Google Scholar 

  2. van der Klis, M.: Millisecond oscillations in x-ray binaries. Ann. Rev. Astron. Astrophys. 38, 717 (2000). arXiv:astro-ph/0001167

    Article  ADS  Google Scholar 

  3. Kluzniak, W., Abramowicz, M.: General relativity and gravitation. Millisecond oscillators in accreting neutron stars and black holes. In: 12th Workshop on General Relativity and Gravitation (2003). arXiv:astro-ph/0304345

  4. Lewin, W.H.G., van der Klis, M.: Compact Stellar X-ray Sources, vol. 39. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  5. Poynting, J.H.: Radiation in the solar system; its effect on temperature and its pressure on small bodies. Mon. Not. R. Astron. Soc. 64, 1a (1903)

    Article  Google Scholar 

  6. Robertson, H.P., Russell, H.N.: Dynamical effects of radiation in the solar system. Mon. Not. R. Astron. Soc. 97, 423 (1937)

    Article  ADS  MATH  Google Scholar 

  7. Akiyama, K., et al.: (Event horizon telescope), First M87 event horizon telescope results. I. The shadow of the supermassive black hole. Astrophys. J. Lett. 875, L1 (2019)

    Article  ADS  Google Scholar 

  8. Akiyama, K., et al.: (Event horizon telescope), First Sagittarius A* event horizon telescope results. I. The shadow of the supermassive black hole in the center of the milky way. Astrophys. J. Lett. 930, L12 (2022)

    Article  ADS  Google Scholar 

  9. Abbott, B.P., et al.: (LIGO Scientific, Virgo), Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016). arXiv:1602.03837 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  10. Abbott, R., et al.: (LIGO Scientific, VIRGO, KAGRA), GWTC-3: compact binary coalescences observed by LIGO and virgo during the second part of the third observing run (2021a). arXiv:2111.03606 [gr-qc]

  11. Abbott, B.P., et al.: (LIGO Scientific, Virgo), GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017). arXiv:1710.05832 [gr-qc]

    Article  ADS  Google Scholar 

  12. Abbott, R., et al.: (LIGO Scientific, KAGRA, VIRGO), Observation of gravitational waves from two neutron star-black hole coalescences. Astrophys. J. Lett. 915, L5 (2021). arXiv:2106.15163 [astro-ph.HE]

    Article  ADS  Google Scholar 

  13. Barack, L., et al.: Black holes, gravitational waves and fundamental physics: a roadmap. Class. Quantum Grav. 36, 143001 (2019). arXiv:1806.05195 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  14. Barausse, E., Cardoso, V., Pani, P.: Can environmental effects spoil precision gravitational-wave astrophysics? Phys. Rev. D 89, 104059 (2014). arXiv:1404.7149 [gr-qc]

    Article  ADS  Google Scholar 

  15. Cardoso, V., Destounis, K., Duque, F., Macedo, R.P., Maselli, A.: Black holes in galaxies: environmental impact on gravitational-wave generation and propagation. Phys. Rev. D 105, L061501 (2022). arXiv:2109.00005 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  16. Cardoso, V., Destounis, K., Duque, F., Panosso Macedo, R., Maselli, A.: Gravitational waves from extreme-mass-ratio systems in astrophysical environments. Phys. Rev. Lett. 129, 241103 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  17. Destounis, K., Kulathingal, A., Kokkotas, K.D., Papadopoulos, G.O.: Gravitational-wave imprints of compact and galactic-scale environments in extreme-mass-ratio binaries. Phys. Rev. D 107, 084027 (2023). arXiv:2210.09357 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  18. Cheung, M.H.-Y., Destounis, K., Macedo, R.P., Berti, E., Cardoso, V.: Destabilizing the fundamental mode of black holes: the elephant and the flea. Phys. Rev. Lett. 128, 111103 (2022). arXiv:2111.05415 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  19. Abbott, B.P., et al.: (LIGO Scientific, Virgo, Fermi-GBM, INTEGRAL), Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 848, L13 (2017). arXiv:1710.05834 [astro-ph.HE]

    Article  ADS  Google Scholar 

  20. Kerr, R.P.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Berti, E., Stergioulas, N.: Approximate matching of analytic and numerical solutions for rapidly rotating neutron stars. Mon. Not. R. Astron. Soc. 350, 1416 (2004). arXiv:gr-qc/0310061

    Article  ADS  Google Scholar 

  22. Pappas, G.: What can quasi-periodic oscillations tell us about the structure of the corresponding compact objects? Mon. Not. R. Astron. Soc. 422, 2581 (2012). arXiv:1201.6071 [astro-ph.HE]

    Article  ADS  Google Scholar 

  23. Manko, V.S., Sibgatullin, N.R.: Construction of exact solutions of the Einstein-Maxwell equations corresponding to a given behaviour of the Ernst potentials on the symmetry axis. Class. Quantum Gravity 10, 1383 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  24. Manko, V.S., Martín, J., Ruiz, E.: Six-parameter solution of the Einstein–Maxwell equations possessing equatorial symmetry. J. Math. Phys. 36, 3063 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Manko, V.S., Sanabria-Gomez, J.D., Manko, O.V.: Nine parameter electrovac metric involving rational functions. Phys. Rev. D 62, 044048 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  26. Manko, V.S., Mielke, E.W., Sanabria-Gomez, J.D.: Exact solution for the exterior field of a rotating neutron star. Phys. Rev. D 61, 081501 (2000). arXiv:gr-qc/0001081

    Article  ADS  Google Scholar 

  27. Stute, M., Camenzind, M.: Towards a self-consistent relativistic model of the exterior gravitational field of rapidly rotating neutron stars. Mon. Not. R. Astron. Soc. 336, 831 (2002). arXiv:astro-ph/0301466

    Article  ADS  Google Scholar 

  28. Pachon, L.A., Rueda, J.A., Sanabria-Gomez, J.D.: Realistic exact solution for the exterior field of a rotating neutron star. Phys. Rev. D 73, 104038 (2006). arXiv:gr-qc/0606060

    Article  ADS  MathSciNet  Google Scholar 

  29. Teichmuller, C., Fröb, M.B., Maucher, F.: Analytical approximation of the exterior gravitational field of rotating neutron stars. Class. Quantum Gravity 28, 155015 (2011). arXiv:1102.5252 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Pappas, G., Apostolatos, T.A.: An all-purpose metric for the exterior of any kind of rotating neutron star. Mon. Not. R. Astron. Soc. 429, 3007 (2013). arXiv:1209.6148 [gr-qc]

    Article  ADS  Google Scholar 

  31. Pappas, G.: An accurate metric for the spacetime around rotating neutron stars. Mon. Not. R. Astron. Soc. 466, 4381 (2017). arXiv:1610.05370 [gr-qc]

    ADS  Google Scholar 

  32. Stergioulas, N., Friedman, J.L.: Comparing models of rapidly rotating relativistic stars constructed by two numerical methods. Astrophys. J. 444, 306 (1995). arXiv:astro-ph/9411032

    Article  ADS  Google Scholar 

  33. Stergioulas, N.: Rotating stars in relativity. Living Rev. Rel. 6, 3 (2003). arXiv:gr-qc/0302034

    Article  MathSciNet  MATH  Google Scholar 

  34. Hartle, J.B., Thorne, K.S.: Slowly rotating relativistic stars. II. Models for neutron stars and supermassive stars. ApJ 153, 807 (1968)

    Article  ADS  Google Scholar 

  35. Hartle, J.B.: Slowly rotating relativistic stars. I. Equations of structure. ApJ 150, 1005 (1967)

    Article  ADS  Google Scholar 

  36. Hartle, J.B., Thorne, K.S.: Slowly rotating relativistic stars. III. Static criterion for stability. ApJ 158, 719 (1969)

    Article  ADS  Google Scholar 

  37. Hartle, J.B.: Slowly-rotating relativistic. IV. Stars rotational energy and moment of inertia for stars in differential rotation. ApJ 161, 111 (1970)

    Article  ADS  Google Scholar 

  38. Hartle, J.B., Thorne, K.S., Chitre, S.M.: Slowly rotating relativistic stars. VI. Stability of the quasiradial modes. ApJ 176, 177 (1972)

    Article  ADS  Google Scholar 

  39. Hartle, J.B.: Slowly rotating relativistic stars. IIIA. The static stability criterion recovered. ApJ 195, 203 (1975)

    Article  ADS  Google Scholar 

  40. Lense, J., Thirring, H.: On the influence of the proper rotation of central bodies on the motions of planets and moons according to Einstein’s theory of gravitation. Phys. Z. 19, 156 (1918)

    Google Scholar 

  41. Vieira, H.S., Destounis, K., Kokkotas, K.D.: Slowly-rotating curved acoustic black holes: quasinormal modes, Hawking–Unruh radiation, and quasibound states. Phys. Rev. D 105, 045015 (2022). arXiv:2112.08711 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  42. Abramowicz, M.A., Almergren, G.J.E., Kluzniak, W., Thampan, A.V.: Circular geodesics in the Hartle–Thorne metric (2003). arXiv:gr-qc/0312070

  43. van der Klis, M., Jansen, F., van Paradijs, J., Lewin, W.H.G., van den Heuvel, E.P.J., Trumper, J.E., Szatjno, M.: Intensity-dependent quasi-periodic oscillations in the X-ray flux of GX5-1. Nature 316, 225 (1985)

    Article  ADS  Google Scholar 

  44. Abramowicz, M.A., Almergren, G.J.E., Kluzniak, W., Thampan, A.V., Wallinder, F.: Holonomy invariance, orbital resonances, and kilohertz QPO(s). Class. Quantum Gravity 19, L57 (2002). arXiv:gr-qc/0202020

    Article  ADS  MATH  Google Scholar 

  45. Ingram, A., van der Klis, M., Middleton, M., Done, C., Altamirano, D., Heil, L., Uttley, P., Axelsson, M.: A quasi-periodic modulation of the iron line centroid energy in the black hole binary H1743–322. Mon. Not. R. Astron. Soc. 461, 1967 (2016). arXiv:1607.02866 [astro-ph.HE]

    Article  ADS  Google Scholar 

  46. Urbancová, G., Urbanec, M., Török, G., Stuchlík, Z., Blaschke, M., Miller, J.C.: Epicyclic oscillations in the Hartle–Thorne external geometry. Astrophys. J. 877, 66 (2019). arXiv:1905.00730 [astro-ph.HE]

    Article  ADS  Google Scholar 

  47. Sulieva, G., Boshkayev, K., Nurbakyt, G., Quevedo, H., Taukenova, A., Tlemissov, A., Tlemissova, Z., Urazalina, A.: Adiabatic theory of motion of bodies in the Hartle–Thorne spacetime (2022). arXiv:2205.04217 [gr-qc]

  48. Stella, L.: The relativistic precession model for QPOs in low mass X-ray binaries. AIP Conf. Proc. 599, 365 (2001). arXiv:astro-ph/0011395

    Article  ADS  Google Scholar 

  49. Rezzolla, L., Yoshida, S., Maccarone, T.J., Zanotti, O.: A new simple model for high frequency quasi periodic oscillations in black hole candidates. Mon. Not. R. Astron. Soc. 344, L37 (2003). arXiv:astro-ph/0307487

    Article  ADS  Google Scholar 

  50. Carter, B.: Global structure of the Kerr family of gravitational fields. Phys. Rev. 174, 1559 (1968)

    Article  ADS  MATH  Google Scholar 

  51. Johannsen, T., Psaltis, D.: A metric for rapidly spinning black holes suitable for strong-field tests of the no-hair theorem. Phys. Rev. D 83, 124015 (2011). arXiv:1105.3191 [gr-qc]

    Article  ADS  Google Scholar 

  52. Papadopoulos, G.O., Kokkotas, K.D.: Preserving Kerr symmetries in deformed spacetimes. Class. Quantum Gravity 35, 185014 (2018). arXiv:1807.08594 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Konoplya, R.A., Stuchlík, Z., Zhidenko, A.: Axisymmetric black holes allowing for separation of variables in the Klein–Gordon and Hamilton–Jacobi equations. Phys. Rev. D 97, 084044 (2018). arXiv:1801.07195 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  54. Papadopoulos, G.O., Kokkotas, K.D.: On Kerr black hole deformations admitting a Carter constant and an invariant criterion for the separability of the wave equation. Gen. Relativ. Gravity 53, 21 (2021). arXiv:2007.12125 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Konoplya, R.A., Zhidenko, A.: Shadows of parametrized axially symmetric black holes allowing for separation of variables. Phys. Rev. D 103, 104033 (2021). arXiv:2103.03855 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  56. Glampedakis, K., Babak, S.: Mapping spacetimes with LISA: inspiral of a test-body in a ‘quasi-Kerr’ field. Class. Quantum Gravity 23, 4167 (2006). arXiv:gr-qc/0510057

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Cornish, N.J.: Chaos and gravitational waves. Phys. Rev. D 64, 084011 (2001). arXiv:gr-qc/0106062

    Article  ADS  Google Scholar 

  58. Cornish, N.J., Levin, J.J.: Lyapunov timescales and black hole binaries. Class. Quantum Gravity 20, 1649 (2003). arXiv:gr-qc/0304056

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Verhaaren, C., Hirschmann, E.W.: Chaotic orbits for spinning particles in Schwarzschild spacetime. Phys. Rev. D 81, 124034 (2010). arXiv:0912.0031 [gr-qc]

    Article  ADS  Google Scholar 

  60. Barausse, E., Rezzolla, L., Petroff, D., Ansorg, M.: Gravitational waves from extreme mass ratio inspirals in non-pure Kerr spacetimes. Phys. Rev. D 75, 064026 (2007). arXiv:gr-qc/0612123

    Article  ADS  MathSciNet  Google Scholar 

  61. Barausse, E., Rezzolla, L.: The Influence of the hydrodynamic drag from an accretion torus on extreme mass-ratio inspirals. Phys. Rev. D 77, 104027 (2008). arXiv:0711.4558 [gr-qc]

    Article  ADS  Google Scholar 

  62. Suzuki, S., Maeda, K.-I.: Chaos in Schwarzschild space-time: the motion of a spinning particle. Phys. Rev. D 55, 4848 (1997). arXiv:gr-qc/9604020

    Article  ADS  Google Scholar 

  63. Zelenka, O., Lukes-Gerakopoulos, G., Witzany, V., Kopáček, O.: Growth of resonances and chaos for a spinning test particle in the Schwarzschild background. Phys. Rev. D 101, 024037 (2020). arXiv:1911.00414 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  64. Lukes-Gerakopoulos, G., Contopoulos, G., Apostolatos, T.A.: Non-linear effects in non-Kerr spacetimes. Springer Proc. Phys. 157, 129 (2014). arXiv:1408.4697 [gr-qc]

    Article  Google Scholar 

  65. Stuchlík, Z., Kološ, M., Kovář, J., Slaný, P., Tursunov, A.: Influence of cosmic repulsion and magnetic fields on accretion disks rotating around Kerr black holes. Universe 6, 26 (2020)

    Article  ADS  Google Scholar 

  66. Stuchlík, Z., Vrba, J.: Supermassive black holes surrounded by dark matter modeled as anisotropic fluid: epicyclic oscillations and their fitting to observed QPOs. JCAP 11(11), 059 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Leung, M.Y., Yip, A.K.L., Cheong, P.C.-K., Li, T.G.F.: Oscillations of highly magnetized non-rotating neutron stars. Commun. Phys. 5, 334 (2022). arXiv:2303.05684 [astro-ph.HE]

    Article  Google Scholar 

  68. Apostolatos, T.A., Lukes-Gerakopoulos, G., Contopoulos, G.: How to observe a non-Kerr spacetime using gravitational waves. Phys. Rev. Lett. 103, 111101 (2009). arXiv:0906.0093 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  69. Lukes-Gerakopoulos, G., Apostolatos, T.A., Contopoulos, G.: Observable signature of a background deviating from the Kerr metric. Phys. Rev. D 81, 124005 (2010). arXiv:1003.3120 [gr-qc]

    Article  ADS  Google Scholar 

  70. Destounis, K., Suvorov, A.G., Kokkotas, K.D.: Testing spacetime symmetry through gravitational waves from extreme-mass-ratio inspirals. Phys. Rev. D 102, 064041 (2020). arXiv:2009.00028 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  71. Chen, C.-Y., Lin, F.-L., Patel, A.: Resonant islands of effective-one-body dynamics. Phys. Rev. D 106, 084064 (2022). arXiv:2206.10966 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  72. Chen, C.-Y., Chiang, H.-W., Patel, A.: Resonant orbits of rotating black holes beyond circularity: discontinuity along a parameter shift. Phys. Rev. D 108, 064016 (2023). arXiv:2306.08356 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  73. Deich, A., Cárdenas-Avendaño, A., Yunes, N.: Chaos in quadratic gravity. Phys. Rev. D 106, 024040 (2022). arXiv:2203.00524 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  74. Destounis, K., Suvorov, A.G., Kokkotas, K.D.: Gravitational-wave glitches in chaotic extreme-mass-ratio inspirals. Phys. Rev. Lett. 126, 141102 (2021). arXiv:2103.05643 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  75. Destounis, K., Kokkotas, K.D.: Gravitational-wave glitches: resonant islands and frequency jumps in nonintegrable extreme-mass-ratio inspirals. Phys. Rev. D 104, 064023 (2021). arXiv:2108.02782 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  76. Destounis, K., Huez, G., Kokkotas, K.D.: Geodesics and gravitational waves in chaotic extreme-mass-ratio inspirals: the curious case of Zipoy–Voorhees black-hole mimickers (2023b). arXiv:2301.11483 [gr-qc]

  77. Destounis, K., Angeloni, F., Vaglio, M., Pani, P.: Extreme-mass-ratio inspirals into rotating boson stars: nonintegrability, chaos, and transient resonances (2023c). arXiv:2305.05691 [gr-qc]

  78. Amaro-Seoane, P., et al.: ( LISA), Laser interferometer space antenna (2017). arXiv:1702.00786 [astro-ph.IM]

  79. Barausse, E., et al.: Prospects for fundamental physics with LISA. Gen. Relativ. Gravity 52, 81 (2020). arXiv:2001.09793 [gr-qc]

    Article  ADS  Google Scholar 

  80. Seoane, P.A., et al.: (LISA), Astrophysics with the laser interferometer space antenna. Living Rev. Rel. 26, 2 (2023). arXiv:2203.06016 [gr-qc]

    Article  Google Scholar 

  81. Arun, K.G., et al.: ( LISA), New horizons for fundamental physics with LISA. Living Rev. Rel. 25, 4 (2022). arXiv:2205.01597 [gr-qc]

    Article  Google Scholar 

  82. Karnesis, N., et al.: The laser interferometer space antenna mission in Greece White Paper (2022). arXiv:2209.04358 [gr-qc]

  83. Kostaros, K., Pappas, G.: Chaotic photon orbits and shadows of a non-Kerr object described by the Hartle–Thorne spacetime. Class. Quantum Gravity 39, 134001 (2022). arXiv:2111.09367 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. Contopoulos, G.: Order and Chaos in Dynamical Astronomy. Springer, New York (2003)

    MATH  Google Scholar 

  85. Glampedakis, K.: Extreme mass ratio inspirals: LISA’s unique probe of black hole gravity. Class. Quantum Gravity 22, S605 (2005). arXiv:gr-qc/0509024

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. Amaro-Seoane, P.: Relativistic dynamics and extreme mass ratio inspirals. Living Rev. Relativ. 21, 4 (2018). arXiv:1205.5240 [astro-ph.CO]

    Article  ADS  Google Scholar 

  87. Lukes-Gerakopoulos, G.: The non-integrability of the Zipoy–Voorhees metric. Phys. Rev. D 86, 044013 (2012). arXiv:1206.0660 [gr-qc]

    Article  ADS  Google Scholar 

  88. Glampedakis, K., Pappas, G.: How well can ultracompact bodies imitate black hole ringdowns? Phys. Rev. D 97, 041502 (2018). arXiv:1710.02136 [gr-qc]

    Article  ADS  Google Scholar 

  89. Yagi, K., Kyutoku, K., Pappas, G., Yunes, N., Apostolatos, T.A.: Effective no-hair relations for neutron stars and quark stars: relativistic results. Phys. Rev. D 89, 124013 (2014). arXiv:1403.6243 [gr-qc]

    Article  ADS  Google Scholar 

  90. Raposo, G., Pani, P., Emparan, R.: Exotic compact objects with soft hair. Phys. Rev. D 99, 104050 (2019). arXiv:1812.07615 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  91. Pacilio, C., Vaglio, M., Maselli, A., Pani, P.: Gravitational-wave detectors as particle-physics laboratories: constraining scalar interactions with a coherent inspiral model of boson-star binaries. Phys. Rev. D 102, 083002 (2020). arXiv:2007.05264 [gr-qc]

    Article  ADS  Google Scholar 

  92. Vaglio, M., Pacilio, C., Maselli, A., Pani, P.: Multipolar structure of rotating boson stars. Phys. Rev. D 105, 124020 (2022). arXiv:2203.07442 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  93. Vaglio, M., Pacilio, C., Maselli, A., Pani, P.: Bayesian parameter estimation on boson-star binary signals with a coherent inspiral template and spin-dependent quadrupolar corrections (2023). arXiv:2302.13954 [gr-qc]

  94. Mignemi, S., Stewart, N.R.: Charged black holes in effective string theory. Phys. Rev. D 47, 5259 (1993). arXiv:hep-th/9212146

    Article  ADS  MathSciNet  Google Scholar 

  95. Mignemi, S.: Dyonic black holes in effective string theory. Phys. Rev. D 51, 934 (1995). arXiv:hep-th/9303102

    Article  ADS  MathSciNet  Google Scholar 

  96. Canizares, P., Gair, J.R., Sopuerta, C.F.: Testing Chern–Simons modified gravity with gravitational-wave detections of extreme-mass-ratio binaries. Phys. Rev. D 86, 044010 (2012). arXiv:1205.1253 [gr-qc]

    Article  ADS  Google Scholar 

  97. De Falco, V., Bakala, P., Falanga, M.: Three-dimensional general relativistic Poynting-Robertson effect. III. Static and nonspherical quadrupolar massive source. Phys. Rev. D 101, 124031 (2020). arXiv:2006.01452 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  98. De Falco, V., Wielgus, M.: Three-dimensional general relativistic Poynting-Robertson effect. IV. Slowly rotating and nonspherical quadrupolar massive source. Phys. Rev. D 103, 084056 (2021). arXiv:2103.17165 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  99. Cunha, P.V.P., Grover, J., Herdeiro, C., Radu, E., Runarsson, H., Wittig, A.: Chaotic lensing around boson stars and Kerr black holes with scalar hair. Phys. Rev. D 94, 104023 (2016). arXiv:1609.01340 [gr-qc]

    Article  ADS  Google Scholar 

  100. Shipley, J., Dolan, S.R.: Binary black hole shadows, chaotic scattering and the Cantor set. Class. Quantum Gravity 33, 175001 (2016). arXiv:1603.04469 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  101. Benhar, O., Ferrari, V., Gualtieri, L., Marassi, S.: Perturbative approach to the structure of rapidly rotating neutron stars. Phys. Rev. D 72, 044028 (2005). arXiv:gr-qc/0504068

    Article  ADS  Google Scholar 

  102. Glampedakis, K., Pappas, G.: Modification of photon trapping orbits as a diagnostic of non-Kerr spacetimes. Phys. Rev. D 99, 124041 (2019). arXiv:1806.09333 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  103. Cardoso, V., Pani, P.: Testing the nature of dark compact objects: a status report. Living Rev. Rel. 22, 4 (2019). arXiv:1904.05363 [gr-qc]

    Article  Google Scholar 

  104. Maggio, E., Pani, P., Raposo, G.: Testing the nature of dark compact objects with gravitational waves. In: Bambi, C., Katsanevas, S., Kokkotas, K.D. (eds.) Handbook of Gravitational Wave Astronomy, pp. 1–37. Springer, Singapore (2020)

    Google Scholar 

  105. Bini, D., Boshkayev, K., Ruffini, R., Siutsou, I.: Equatorial Circular Geodesics in the Hartle–Thorne Spacetime. Nuovo Cim. C 036, 31 (2013). arXiv:1306.4792 [gr-qc]

    ADS  Google Scholar 

  106. Contopoulos, G., Lukes-Gerakopoulos, G., Apostolatos, T.A.: Orbits in a non-Kerr dynamical system. Int. J. Bifurc. Chaos 21, 2261 (2011). arXiv:1108.5057 [gr-qc]

    Article  Google Scholar 

  107. Arnol’d, V.I.: Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the hamiltonian. Russ. Math. Surv. 18, 9 (1963)

    Article  MATH  Google Scholar 

  108. Möser, J.: On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Göttingen II, 1 (1962)

    MathSciNet  MATH  Google Scholar 

  109. Birkhoff, G.D.: Proof of poincaré’s geometric theorem. Trans. Am. Math. Soc. 14, 14 (1913)

    MATH  Google Scholar 

  110. Lukes-Gerakopoulos, G., Contopoulos, G.: Mind the resonances: final stages of accretion into bumpy black holes. J. Phys. Conf. Ser. 453, 012005 (2013). arXiv:1304.7612 [gr-qc]

    Article  Google Scholar 

  111. Boshkayev, K., Bini, D., Rueda, J., Geralico, A., Muccino, M., Siutsou, I.: What can we extract from quasi-periodic oscillations? Gravit. Cosmol. 20, 233 (2014). arXiv:1412.8214 [astro-ph.HE]

    Article  ADS  MATH  Google Scholar 

  112. Boshkayev, K., Rueda, J., Muccino, M.: Extracting multipole moments of neutron stars from quasi-periodic oscillations in low mass X-ray binaries. Astron. Rep. 59, 441 (2015)

    Article  ADS  Google Scholar 

  113. Boshkayev, K., Rueda, J.A., Muccino, M.: Main parameters of neutron stars from quasi-periodic oscillations in low mass X-ray binaries, in 14th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity. Astrophys. Relativ. Field Theor. 4, 3433–3440 (2017). arXiv:1604.02398 [astro-ph.HE]

    Google Scholar 

Download references

Acknowledgements

The authors would like to, finally, warmly thank Prof. G. Pappas, Prof. K. Glampedakis, Prof. Th. Apostolatos, Prof. P. Pani, Dr. A. Eleni and Dr. P. Manoharan for critical comments and helpful discussions.

Funding

This work was supported by the DAAD program for the “promotion of the exchange and scientific cooperation between Greece and Germany IKYDAAD 2022” (57628320). K.D. and K.K. are grateful for hospitality provided by the Department of Physics of the University of Athens, Greece. K.D. further acknowledges financial support provided under the European Union’s H2020 ERC, Starting Grant Agreement No. DarkGRA–757480 and the MIUR PRIN and FARE programmes (GW-NEXT, CUP: B84I20000100001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyriakos Destounis.

Ethics declarations

Conflict of interest

We the authors hereby declare that there are no competing interests of financial or personal nature.

Ethical approval

Ethical approval for this work is not applicable. All authors have contributed equally for the execution of calculations and the presentation of results, as well as the creation of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Destounis, K., Kokkotas, K.D. Slowly-rotating compact objects: the nonintegrability of Hartle–Thorne particle geodesics. Gen Relativ Gravit 55, 123 (2023). https://doi.org/10.1007/s10714-023-03170-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03170-z

Keywords

Navigation