Skip to main content
Log in

Solar radiation and energy of Arrhenius activation evaluation on a convectively heated stretching sheet flowing of Williamson hybrid nanofluid

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

A hybrid nanomaterial is a material that instantly combines the chemical and physical properties of different liquids and gives those properties in a uniform phase. The use of nanotechnology in various fields of engineering, biomedicine, industry, advanced nanotechnology, pharmaceuticals and biotechnology has convinced scientists that they enable more economical and simpler applications. Therefore, with such effectiveness in mind, a theoretical study has been conducted to examine the entropy generation and nonlinear thermal radiation and behavioral performance of the non-Newtonian flow of Williamson liquid of a hybrid nanofluid facing a convectively heated stretching surface. In this article, hybrid nanoparticles are discussed, where the particles are MoS2 and TiO2. Water is treated as a base liquid. The system of PDE is transformed into a system of ODE applying the similarity transformation, and relevant parameters are calculated by the Runge–Kutta method. The behavior of significant physical quantities on the velocity, temperature, concentration distributions, entropy generation, and Bejan number are analyzed through plots. The comparison of base liquid, nanofluid, and hybrid nanofluid is depicted graphically. Nusselt number and skin friction coefficient are numerically evaluated under involved physical parameters. The entropy generation increases for increasing the values of the Eckert number, diffusion parameter, Brinkman number, and radiation parameter, while an increase in activation energy parameter decreases entropy generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. K Muhammad, T Hayat and A Alsaedi J. Therm Anal Calorim. 143 1523 (2021)

    Article  CAS  Google Scholar 

  2. K Muhammad J. Therm Anal Calorim. 143 1291 (2021)

    Article  CAS  Google Scholar 

  3. S A Khan and M I Khan T Hayat and A Alsaedi Comput Methods Programs Biomed. 185 105152 (2020)

    Google Scholar 

  4. A Mushtaq and M Mustafa J. Taiwan Inst Chem Eng. 45 1176 (2014)

    Article  CAS  Google Scholar 

  5. L S Sundar, K V Sharma, M K Singh and A C M Sousa Renew Sustain Energy Rev. 68 185 (2017)

    Article  CAS  Google Scholar 

  6. M F Nabil, W H Azmi, K A Hamid and N N M Zawawi G Priyandoko and R Mamat Int Commun Heat Mass Transf. 83 30 (2017)

    Article  CAS  Google Scholar 

  7. J A R Babu, K K Kumar and S S Rao Renew Sustain Energy Rev. 77 551 (2017)

    Article  Google Scholar 

  8. H Li, Y He and Y Hu J. Heat Mass Transfer. 91 385 (2015)

    Article  CAS  Google Scholar 

  9. Y Hu, Y He and C Qi J. Heat Mass Transfer. 78 380 (2014)

    Article  CAS  Google Scholar 

  10. M Chen, Y He, J Huang and J Zhu Int. J. Heat Mass Transfer. 108 1894 (2017)

    Article  CAS  Google Scholar 

  11. Y Hu, H Li and Y He J. Heat Mass Transfer. 107 820 (2017)

    Article  CAS  Google Scholar 

  12. B Sun J. Heat Mass Transfer. 107 712 (2017)

    Article  CAS  Google Scholar 

  13. H Akhavan-Zanjani, M Saffar-Avval and M Mansourkiaei J. Therm. Sci. 100 316 (2016)

    Article  CAS  Google Scholar 

  14. C Qi and L Yang Therm. Eng. 129 1315 (2018)

    Article  CAS  Google Scholar 

  15. F Fan, C Qi, J Tang and Q Liu Therm. Eng. 179 115688 (2020)

    Article  CAS  Google Scholar 

  16. J Tang, C Qi and Z Ding Commun. Heat Mass Tran. 127 105492 (2021)

    Article  CAS  Google Scholar 

  17. X Zhai and C Qi Therm. Eng. 186 116491 (2021)

    Article  CAS  Google Scholar 

  18. I Wole-Osho, H Adun, M Adedeji and E C Okonkwo J. Energy Res. 44 9064 (2020)

    Article  CAS  Google Scholar 

  19. A A Minea and W M El-Maghlany Renew Energy 20 350 (2018)

    Article  Google Scholar 

  20. E Bellos and C Tzivanidis Sustain Energy Technol Assessments 26 105 (2018)

    Article  Google Scholar 

  21. V Kumar and J Sarkar Powder Technol 345 717 (2019)

    Article  CAS  Google Scholar 

  22. N A Zainal, R Nazar, K Naganthra and I Pop Int J Numer Methods Heat Fluid Flow 31 858 (2020)

    Article  Google Scholar 

  23. N A Zainal and R Nazar K Naganthran and I Pop Mathematics 9 1 (2021)

    Google Scholar 

  24. M I Khan, S Qayyum, T Hayat and M Waqas J. Mol. Liq. 259 274 (2018)

    Article  CAS  Google Scholar 

  25. K L Hsiao Energy 130 486 (2017)

    Article  Google Scholar 

  26. M I Khan, T Hayat, M I Khan and A Alsaedi Int Commun Heat Mass Transf. 91 216 (2018)

    Article  CAS  Google Scholar 

  27. M I Khan and M Waqas T Hayat and A AlSaedi Phys Chem Liq. 56 584 (2018)

    CAS  Google Scholar 

  28. T Hayat, S Qayyum, A Alsaedi and S A Shehzad J Mol Liq. 223 969 (2016)

    Article  CAS  Google Scholar 

  29. S Nadeem and S T Hussain Appl Nanosci 4 1005 (2014)

    Article  CAS  ADS  Google Scholar 

  30. F E Alsaadi, T Hayat, M I Khan and F E Alsaadi Comput Methods Programs Biomed. 183 105051 (2020)

    Article  PubMed  Google Scholar 

  31. M I Khan, M U Hafeez, T Hayat, M I Khan and A Alsaedi Comput Methods Programs Biomed. 183 105093 (2020)

    Article  Google Scholar 

  32. B Jalilpour, S Jafarmadar, M M Rashidi, D D Ganji and R Rahime Ain Shams Eng. J. 9 1671 (2018)

  33. N S Yousef J. Phys. 97 2475 (2023)

    CAS  Google Scholar 

  34. A Elham and A M Megahed Nanotechnol. Rev. 11 463 (2022)

    Article  Google Scholar 

  35. S T M Din, T Zubair, M Usman, M Hamid, M Rafiq and S Mohsin Indian J. Phys. 92 1109 (2018)

    Article  ADS  Google Scholar 

  36. B Jalilpour Soc. Mech. Sci. Eng. 37 837 (2015)

    CAS  Google Scholar 

  37. S Das, S Sarkar and R N Jana Bionanoscience 10 950 (2020)

    Article  Google Scholar 

  38. T Hayat, S A Khan, A Alsaedi and Q M Z Zai Int Commun Heat Mass Transf. 118 104881 (2020)

    Article  CAS  Google Scholar 

  39. W Liu, A Shahsavar, A A Barzinjy, A A A A Al-Rashed and M Afrand Int Commun Heat Mass Transf. 108 104309 (2019)

    Article  CAS  Google Scholar 

  40. K H Hosseinzadeh, A Asadi, A R Mogharrebi and J Khalesi Therm. Eng. 14 100482 (2019)

    Google Scholar 

  41. F E Alsaadi, T Hayat, S A Khan, F E Alsaadi and M I Khan Comput Methods Programs Biomed. 183 105061 (2020)

    Article  PubMed  Google Scholar 

  42. Y Jiang and X Zhou Int Commun Heat Mass Transf. 105 37 (2019)

    Article  CAS  Google Scholar 

  43. O D Makinde and A S Eegunjobi Forum 387 364 (2018)

    Google Scholar 

  44. S Ahmad J. Therm Anal Calorim. 143 2665 (2021)

    Article  CAS  Google Scholar 

  45. M K A Mohamed, A Hussanan, H T Alkasasbeh, B Widodo and M Z Salleh Data Analytics and Applied Mathematic (DAAM) 2 11 (2021)

    Google Scholar 

  46. S Mumraiz, A Ali and M Awais J. Therm Anal Calorim. 143 2135 (2021)

    Article  CAS  Google Scholar 

  47. R Djebali, F Mebarek-Oudina and R Choudhari Physica Scripta 96 085206 (2021)

    Article  ADS  Google Scholar 

  48. Z M Mburu, S Mondal and P Sibanda J Comput Des Eng. 8 149 (2021)

    Google Scholar 

  49. J Sarkar, P Ghosh and A Adil Renew Sustain Energy Rev. 43 164 (2015)

    Article  CAS  Google Scholar 

  50. M Afrand, K N Najafabadi and M Akbari Appl Therm Eng. 102 45 (2016)

    Article  CAS  Google Scholar 

  51. M U Hafeez, T Hayat and A Alsaedi Int Commun Heat Mass Transf. 124 105234 (2021)

    Article  CAS  Google Scholar 

  52. B Ahmed and T Hayat Commun. Heat Mass Transf. 126 105320 (2021)

    Article  CAS  Google Scholar 

  53. R Mohammad and R Kandasamy J. Mol. Liq. 237 54 (2017)

    Article  CAS  Google Scholar 

  54. T Hayat, T Javed and Z Abbas Real World Appl. 10 1514 (2009)

    Article  Google Scholar 

  55. R Nazar, N Amin, D Filip and I Pop Int J Non Linear Mech. 39 1227 (2004)

    Article  Google Scholar 

  56. E N Maraj, Z Iqbal, E Azhar and Z Mehmood Result Phys. 8 633 (2018)

    Article  ADS  Google Scholar 

  57. S S Ghadikolaei and M Gholinia J. Taiwan Inst. Chem. Eng. 97 12 (2019)

    Article  CAS  Google Scholar 

  58. K H Hosseinzadeh, S O Roghani, A R Mogharrebi, A Asadi and D D Ganji J. Therm Anal Calorim. 143 1413 (2021)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. Jalilpour or S. Jafarmadar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalilpour, B., Jafarmadar, S., Khalilarya, S. et al. Solar radiation and energy of Arrhenius activation evaluation on a convectively heated stretching sheet flowing of Williamson hybrid nanofluid. Indian J Phys 98, 1745–1760 (2024). https://doi.org/10.1007/s12648-023-02943-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02943-1

Keywords

Navigation