Skip to main content

Advertisement

Log in

TRPV1 inhibition suppresses non-small cell lung cancer progression by inhibiting tumour growth and enhancing the immune response

  • Research
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

TRPV1 is a nonselective Ca2+ channel protein that is widely expressed and plays an important role during the occurrence and development of many cancers. Activation of TRPV1 channels can affect tumour progression by regulating proliferation, apoptosis and migration. Some studies have also shown that activating TRPV1 can affect tumour progression by modulating tumour immunity. However, the effects of TRPV1 on the development of non-small cell lung cancer (NSCLC) have not been explored clearly.

Method

The Cancer Genome Atlas (TCGA) database and spatial transcriptomics datasets from 10 × Genomics were used to analyze TRPV1 expression in various tumour tissues. Cell proliferation and apoptosis were examined by cell counting kit 8 (CCK8), colony formation, and flow cytometry. Immunohistochemistry, qPCR, and western blotting were used to determine the mRNA and protein expression levels of TRPV1 and other related molecules. Tumour xenografts in BALB/C and C57BL/6J mice were used to determine the effects of TRPV1 on NSCLC development in vivo. Neurotransmitter content was examined by LC-MS/MS, ELISA and Immunohistochemistry. Immune cell infiltration was assessed by flow cytometry.

Results

In this study, we found that TRPV1 expression was significantly upregulated in NSCLC and that patients with high TRPV1 expression had a poor prognosis. TRPV1 knockdown can significantly inhibit NSCLC proliferation and induce cell apoptosis through Ca2+-IGF1R signaling. In addition, TRPV1 knockdown resulted in increased infiltration of CD4+ T cells, CD8+ T cells, GZMB+CD8+ T cells and DCs and decreased infiltration of immunosuppressive MDSCs in NSCLC. In addition, TRPV1 knockout effectively decreased the expression of M2 macrophage markers CD163 and increased the expression of M1-associated, costimulatory markers CD86. Knockdown or knockout of TRPV1 significantly inhibit tumour growth and promoted an antitumour immune response through supressing γ-aminobutyric acid (GABA) secretion in NSCLC.

Conclusion

Our study suggests that TRPV1 acts as a tumour promoter in NSCLC, mediating pro-proliferative and anti-apoptotic effects on NSCLC through IGF1R signaling and regulating GABA release to affect the tumour immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. I.S. Ramsey, M. Delling, D.E. Clapham, An introduction to TRP channels. Annu. Rev. Physiol. 68, 619–647 (2006)

    Article  CAS  PubMed  Google Scholar 

  2. K. Yamaguchi et al., Distinct TRPV1- and TRPA1-based mechanisms underlying enhancement of oral ulcerative mucositis-induced pain by 5-fluorouracil. Pain. 157, 1004–1020 (2016)

    Article  CAS  PubMed  Google Scholar 

  3. S. Bertin et al., The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4(+) T cells. Nat. Immunol. 15, 1055–1063 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. L. Li et al., The impact of TRPV1 on Cancer Pathogenesis and Therapy: a systematic review. Int. J. Biol. Sci. 17, 2034–2049 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. M. Hartel et al., Vanilloids in Pancreatic cancer: potential for chemotherapy and pain management. Gut. 55, 519–528 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. R. Marincsak et al., Increased expression of TRPV1 in squamous cell carcinoma of the human tongue. Oral Dis. 15, 328–335 (2009)

    Article  CAS  PubMed  Google Scholar 

  7. G. Czifra et al., Increased expressions of cannabinoid receptor-1 and transient receptor potential vanilloid-1 in human prostate carcinoma. J. Cancer Res. Clin. Oncol. 135, 507–514 (2009)

    Article  CAS  PubMed  Google Scholar 

  8. L.V. Weber et al., Expression and functionality of TRPV1 in Breast cancer cells. Breast Cancer (Dove Med Press. 8, 243–252 (2016)

    CAS  PubMed  Google Scholar 

  9. M.B. Morelli et al., Cross-talk between alpha1D-adrenoceptors and transient receptor potential vanilloid type 1 triggers Prostate cancer cell proliferation. Bmc Cancer. 14, 921 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  10. B. Sung et al., Capsazepine, a TRPV1 antagonist, sensitizes Colorectal cancer cells to apoptosis by TRAIL through ROS-JNK-CHOP-mediated upregulation of death receptors. Free Radic Biol Med. 53, 1977–1987 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. S. Basu, P. Srivastava, Immunological role of neuronal receptor vanilloid receptor 1 expressed on dendritic cells. Proc. Natl. Acad. Sci. U S A 102, 5120–5125 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. X. Jiang et al., The ion channel TRPV1 gain-of-function reprograms the immune microenvironment to facilitate colorectal tumorigenesis. Cancer Lett. 527, 95–106 (2022)

    Article  CAS  PubMed  Google Scholar 

  13. P. Bryant et al., Capsaicin-sensitive nerves regulate the metabolic response to abdominal sepsis. J. Surg. Res. 112, 152–161 (2003)

    Article  CAS  PubMed  Google Scholar 

  14. Y. Ganor, M. Levite, The neurotransmitter glutamate and human T cells: glutamate receptors and glutamate-induced direct and potent effects on normal human T cells, cancerous human Leukemia and Lymphoma T cells, and autoimmune human T cells. J. Neural Transm (Vienna). 121, 983–1006 (2014)

    Article  CAS  PubMed  Google Scholar 

  15. M. Balood et al., Nociceptor neurons affect cancer immunosurveillance. Nature. 611, 405–412 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. J. Li, Y. Sun, G. Ding, F. Jiang, Persistent pain accelerates xenograft Tumor growth of Breast cancer in rat. Biochem. Biophys. Res. Commun. 495, 2432–2438 (2018)

    Article  CAS  PubMed  Google Scholar 

  17. S. Garcia-Recio et al., Substance P autocrine signaling contributes to persistent HER2 activation that drives malignant progression and drug resistance in Breast cancer. Cancer Res. 73, 6424–6434 (2013)

    Article  CAS  PubMed  Google Scholar 

  18. R. Dantzer, Neuroimmune interactions: from the brain to the Immune System and Vice Versa. Physiol. Rev. 98, 477–504 (2018)

    Article  CAS  PubMed  Google Scholar 

  19. S.H. Jiang et al., Neurotransmitters: emerging targets in cancer. Oncogene. 39, 503–515 (2020)

    Article  CAS  PubMed  Google Scholar 

  20. F. Entschladen et al., Tumour-cell migration, invasion, and Metastasis: navigation by neurotransmitters. Lancet Oncol. 5, 254–258 (2004)

    Article  CAS  PubMed  Google Scholar 

  21. J.K. Bujak et al., Inflammation, Cancer and Immunity-Implication of TRPV1 Channel. Front. Oncol. 9, 1087 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  22. J. Szolcsanyi, E. Pinter, Z. Helyes, G. Petho, Inhibition of the function of TRPV1-expressing nociceptive sensory neurons by somatostatin 4 receptor agonism: mechanism and therapeutical implications. Curr. Top. Med. Chem. 11, 2253–2263 (2011)

    Article  CAS  PubMed  Google Scholar 

  23. S. Bevan, T. Quallo, D.A. Andersson, TRPV1. Handb. Exp. Pharmacol. 222, 207–245 (2014)

    Article  CAS  PubMed  Google Scholar 

  24. R. Ramer, B. Hinz, Inhibition of cancer cell invasion by cannabinoids via increased expression of tissue inhibitor of matrix metalloproteinases-1. J. Natl. Cancer Inst. 100, 59–69 (2008)

    Article  CAS  PubMed  Google Scholar 

  25. K.C. Thomas et al., Transient receptor potential vanilloid 1 agonists cause endoplasmic reticulum stress and cell death in human lung cells. J. Pharmacol. Exp. Ther. 321, 830–838 (2007)

    Article  CAS  PubMed  Google Scholar 

  26. C.A. Reilly et al., Capsaicinoids cause inflammation and epithelial cell death through activation of vanilloid receptors. Toxicol. Sci. 73, 170–181 (2003)

    Article  CAS  PubMed  Google Scholar 

  27. L.R. Sadofsky et al., Inflammatory stimuli up-regulate transient receptor potential vanilloid-1 expression in human bronchial fibroblasts. Exp. Lung Res. 38, 75–81 (2012)

    Article  CAS  PubMed  Google Scholar 

  28. L. Li et al., Transient Receptor Potential Cation Channel Subfamily V Member 1 expression promotes Chemoresistance in Non-small-cell Lung Cancer. Front. Oncol. 12, 773654 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. C. Crudden et al., The dichotomy of the insulin-like growth factor 1 receptor: RTK and GPCR: friend or foe for cancer treatment? Growth Horm. Igf Res. 25, 2–12 (2015)

    Article  CAS  PubMed  Google Scholar 

  30. M. Pollak, The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat. Rev. Cancer. 12, 159–169 (2012)

    Article  CAS  PubMed  Google Scholar 

  31. R. Baserga, The insulin-like growth factor I receptor: a key to Tumor growth? Cancer Res. 55, 249–252 (1995)

    CAS  PubMed  Google Scholar 

  32. R. Baserga, F. Peruzzi, K. Reiss, The IGF-1 receptor in cancer biology. Int. J. Cancer. 107, 873–877 (2003)

    Article  CAS  PubMed  Google Scholar 

  33. M.A. Economou et al., Inhibition of VEGF secretion and experimental choroidal neovascularization by picropodophyllin (PPP), an inhibitor of the insulin-like growth factor-1 receptor. Invest. Ophthalmol. Vis. Sci. 49, 2620–2626 (2008)

    Article  PubMed  Google Scholar 

  34. R. Baserga, The decline and fall of the IGF-I receptor. J. Cell. Physiol. 228, 675–679 (2013)

    Article  CAS  PubMed  Google Scholar 

  35. B.I. Toth, A. Olah, A.G. Szollosi, T. Biro, TRP channels in the skin. Br. J. Pharmacol. 171, 2568–2581 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Di B.A. Bartolo et al., Calcium and osteoprotegerin regulate IGF1R expression to inhibit vascular calcification. Cardiovasc. Res. 91, 537–545 (2011)

    Article  PubMed  Google Scholar 

  37. M. Miura et al., Peripheral sensitization caused by insulin-like growth factor 1 contributes to pain hypersensitivity after tissue injury. Pain. 152, 888–895 (2011)

    Article  CAS  PubMed  Google Scholar 

  38. H.S. Kim et al., Attenuation of natural killer cell functions by capsaicin through a direct and TRPV1-independent mechanism. Carcinogenesis. 35, 1652–1660 (2014)

    Article  CAS  PubMed  Google Scholar 

  39. J.P. White, L. Urban, I. Nagy, TRPV1 function in health and Disease. Curr. Pharm. Biotechnol. 12, 130–144 (2011)

    Article  CAS  PubMed  Google Scholar 

  40. C. Vercelli et al., Expression and functionality of TRPV1 receptor in human MCF-7 and canine CF.41 cells. Vet. Comp. Oncol. 13, 133–142 (2015)

    Article  CAS  PubMed  Google Scholar 

  41. N. Erin, Role of sensory neurons, neuroimmune pathways, and transient receptor potential vanilloid 1 (TRPV1) channels in a murine model of Breast cancer Metastasis. Cancer Immunol. Immunother. 69, 307–314 (2020)

    Article  CAS  PubMed  Google Scholar 

  42. A.H. Zahalka, P.S. Frenette, Nerves in cancer. Nat. Rev. Cancer. 20, 143–157 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. M. Watanabe et al., GABA and GABA receptors in the central nervous system and other organs. Int. Rev. Cytol. 213, 1–47 (2002)

    Article  CAS  PubMed  Google Scholar 

  44. C.G. Wong, T. Bottiglieri, O.R. Snead, GABA, gamma-hydroxybutyric acid, and neurological Disease. Ann. Neurol. 54(6), S3–S12 (2003)

    Article  CAS  PubMed  Google Scholar 

  45. D. Huang et al., Cancer-cell-derived GABA promotes beta-catenin-mediated tumour growth and immunosuppression. Nat. Cell. Biol. 24, 230–241 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. M. Matuszek, M. Jesipowicz, Z. Kleinrok, GABA content and GAD activity in gastric cancer. Med. Sci. Monit. 7, 377–381 (2001)

    CAS  PubMed  Google Scholar 

  47. M. Mazurkiewicz et al., GABA level and GAD activity in human and mouse normal and neoplastic mammary gland. J. Exp. Clin. Cancer Res. 18, 247–253 (1999)

    CAS  PubMed  Google Scholar 

  48. Z. Kleinrok et al., GABA content and GAD activity in colon tumors taken from patients with colon Cancer or from xenografted human colon Cancer cells growing as s.c. tumors in athymic nu/nu mice. J. Physiol. Pharmacol. 49, 303–310 (1998)

    CAS  PubMed  Google Scholar 

  49. B. Zhang et al., B cell-derived GABA elicits IL-10(+) macrophages to limit anti-tumour immunity. Nature. 599, 471–476 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. K. Croitoru et al., Selective modulation of the natural killer activity of murine intestinal intraepithelial leucocytes by the neuropeptide substance P. Immunology. 71, 196–201 (1990)

    CAS  PubMed  PubMed Central  Google Scholar 

  51. B.M. Janelsins et al., Neurokinin-1 receptor agonists bias therapeutic dendritic cells to induce type 1 immunity by licensing host dendritic cells to produce IL-12. Blood. 121, 2923–2933 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (No. 82173906); the key project of Ministry of Science and Technology, China (2022YFC2010004); Chinese National Major Project for New Drug Innovation. (No. 2019ZX09201-002-006); the key project of Health Commission of Hunan Province (No.202113010141); Natural Science Foundation of Hunan Province, China (No.2021JJ31063 and No.2021JJ31044). Fundamental Research Funds for the Central Universities of Central South University (No.198101066 and No.208111176).

Author information

Authors and Affiliations

Authors

Contributions

Yijing He designed and guided the experiments; Yang Wang conducted the experiments, wrote the manuscript, and analyzed the data; Yu Zhang, Jing Ouyang, Hanying Yi, and Shiyu Wang contributed to the cell experiments; Dongbo Liu, Yingying Dai Ziyang Hong and Wenwu Pei helped to use equipment and instruments. Yijing He, Kun Song, Ling Chen, Wei Zhang, Zhaoqian Liu and Howard L. Mcleod supervised and reviewed the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yijing He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The animal study was reviewed and approved by the Ethics Committee of the Xiangya Hospital, Central South University, Changsha, China.

Consent for publication

All authors agree to publish.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, Y., Ouyang, J. et al. TRPV1 inhibition suppresses non-small cell lung cancer progression by inhibiting tumour growth and enhancing the immune response. Cell Oncol. (2023). https://doi.org/10.1007/s13402-023-00894-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13402-023-00894-7

Keywords

Navigation