Skip to main content
Log in

Weyl neutrinos in plane symmetric spacetimes

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We investigate complex quaternion-valued exterior differential forms over 4-dimensional Lorentzian spacetimes and explore Weyl spinor fields as minimal left ideals within the complex quaternion algebra. The variational derivation of the coupled Einstein–Weyl equations from an action is presented, and the resulting field equations for both first and second order variations are derived and simplified. Exact plane symmetric solutions of the Einstein–Weyl equations are discussed, and two families of exact solutions describing left-moving and right-moving neutrino plane waves are provided. The study highlights the significance of adjusting a quartic self-coupling of the Weyl spinor in the action to ensure the equivalence of the field equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

No new data were created or analysed in this study.

Notes

  1. These correspond to undotted spinors in the NP formalism. In our approach dotted spinors of NP formalism are identified as minimal right ideals with a corresponding spin basis.

  2. Here and all that follow, variations are given up to closed forms.

  3. We thank our referee for pointing this out.

References

  1. Close, F.: Neutrino. Oxford University Press, Oxford (2010)

    Google Scholar 

  2. Senjanovic, G.: Neutrino 2020: theory outlook. Int. J. Mod. Phys. A 36, 2130003 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  3. Brill, D., Wheeler, J.A.: Interaction of neutrinos and gravitational fields. Rev. Mod. Phys. 29, 465 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Wainwright, J.: Geometric properties of neutrino fields in curved space-time. J. Math. Phys. 12, 828 (1971)

    Article  ADS  Google Scholar 

  5. Trim, D., Wainwright, J.: Combined neutrino-gravitational fields in general relativity. J. Math. Phys. 12, 2494 (1971)

    Article  ADS  Google Scholar 

  6. Griffiths, J.B.: Gravitational radiation and neutrinos. Commun. Math. Phys. 28, 295 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  7. Madore, J.: On the neutrino in general relativity. Lett. Nuo. Cim. 5, 48 (1972)

    Article  Google Scholar 

  8. Taub, A.H.: Empty space-times admitting a three parameter group of motions. Ann. Math. 53, 472 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Taub, A.H.: Isentropic hydrodynamics in plane symmetric space-times. Phys. Rev. 103, 454 (1956)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Taub, A.H.: Plane-symmetric similarity solutions for self-gravitating fluids. In: O’Raifeartartaigh, L. (ed.) General Relativity: Papers in Honour of J. J. Synge, pp. 133–150. Oxford University Press, Oxford (1972)

    Google Scholar 

  11. Carlson, G.T., Jr., Safko, J.L.: An investigation of some of the kinematical aspects of plane symmetric space-times. J. Math. Phys. 19, 1617 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Dereli, T., Tucker, R.W.: An intrinsic analysis of neutrino couplings to gravity. J. Phys. A 15, 1625 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  13. Benn, I.M.: Complex quaternionic formulation of \(SL(2,{{\mathbb{C}}})\) gauge theories of gravitation. Unpublished Ph.D. thesis. Lancaster University (1981)

  14. Davis, T.M., Ray, J.R.: Ghost neutrinos in plane-symmetric spacetimes. J. Math. Phys. 16, 75 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  15. Hayward, S.A.: Energy of gravitational radiation in plane-symmetric space-times. Phys. Rev. D 78, 044027 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  16. Collinson, C.D., Morris, P.B.: Spacetimes admitting neutrino fields with zero energy and momentum. J. Phys. A 6, 915 (1973)

    Article  ADS  Google Scholar 

  17. Davis, T.M., Ray, J.R.: Ghost neutrinos in general relativity. Phys. Rev. D 9, 334 (1974)

    Article  ADS  Google Scholar 

  18. Dereli, T., Tucker, R.W.: Exact neutrino solutions in the presence of torsion. Phys. Lett. A 82, 229 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  19. Griffiths, J.B.: Neutrino fields in Einstein–Cartan theory. Gen. Relativ. Gravit. 13, 227 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Dimakis, A., Müller-Hoissen, F.: Solutions of the Einstein–Cartan–Dirac equations with vanishing energy-momentum tensor. J. Math. Phys. 26, 1040 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Chianese, M., Fu, B., King, S.F.: Interplay between neutrino and gravity portals for FIMP dark matter. JCAP 01, 034 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  22. Furey, C.: Three generations, two unbroken gauge symmetries, and one eight-dimensional algebra. Phys. Lett. B 785, 84 (2018)

    Article  ADS  MATH  Google Scholar 

  23. Jimenez, J.B., Koivisto, T.S.: Listening to celestial algebras. Universe 8, 407 (2022)

    Article  ADS  Google Scholar 

  24. Todorov, I.: Octonion internal space algebra for the standard model. Universe 9, 222 (2023)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of us (T.D.) thanks the Turkish Academy of Sciences (TUBA) for partial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yorgo Şenikoğlu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We start with the identity \( {}^*{\bar{e}} = \frac{1}{6} e^{*} \wedge e \wedge e^{*}, \) that implies

$$\begin{aligned} \nabla ^*{\bar{e}}= & {} \frac{i}{6}(\nabla e^* \wedge e \wedge e^* - e^* \wedge \nabla e \wedge e^* + e^* \wedge e \wedge \nabla e^*) \\= & {} \frac{i}{6}(T^*\wedge e \wedge e^*- e^* \wedge T \wedge e^* +e^* \wedge e \wedge T^*)\\= & {} \frac{i}{6}{\mathcal {H}}(2T^*\wedge e \wedge e^* - e^*\wedge T \wedge e^*). \end{aligned}$$

Then we use the variational field equations

$$\begin{aligned} 2T= 2 {\mathcal {A}}(h e^{*} \wedge e) - e \wedge {\bar{h}} \wedge e \end{aligned}$$

where \(h = -\frac{1}{6} \xi \xi ^{\dagger }\). Then

$$\begin{aligned} \nabla {}^*{\bar{e}}= & {} \frac{i}{12}{\mathcal {H}}\Big ( 2(h^*e \wedge e^* + e^*\wedge eh^* - e^*h\wedge e^*)\wedge e \wedge e^* \\{} & {} \quad -\, e^* \wedge (he^*\wedge e + e\wedge e^*h-eh^*\wedge e) \wedge e^* \Big )\\= & {} \frac{i}{12}{\mathcal {H}}\Big (2h^*\wedge e \wedge e^*\wedge e \wedge e^*+3e^* \wedge eh^*\wedge e \wedge e^* - 4e^*\wedge he^* \wedge e \wedge e^* \Big )\\= & {} \frac{i}{12}{\mathcal {H}}\Big ( 2(h^*e\wedge e^* + e^*\wedge eh^*)\wedge e \wedge e^* + e^* \wedge eh^* \wedge e \wedge e^* - 4e^*\wedge h e^*\wedge e \wedge e^* \Big ). \end{aligned}$$

Now we use the identities

$$\begin{aligned} (h^*e \wedge e^*)^{\dagger }=(e\wedge e^*)^{\dagger }{\bar{h}}=-{\bar{e}}\wedge e^{\dagger }h^* = -e^* \wedge eh^*, \end{aligned}$$
(65)

and

$$\begin{aligned} (e^* \wedge he^*)^{\dagger }=-(he^*)^{\dagger }\wedge {\bar{e}}=-{\bar{e}}h \wedge {\bar{e}}=-e^* \wedge he^*, \end{aligned}$$
(66)

to simplify the above expression:

$$\begin{aligned} \nabla ^*{\bar{e}}=\frac{i}{12}{\mathcal {H}}\Big ( 4{\mathcal {A}}(h^*e\wedge e^*-e^*\wedge eh^*)\wedge e \wedge e^* + e^* \wedge eh^* \wedge e \wedge e^*\Big ). \end{aligned}$$
(67)

The first term inside the big parantheses vanishes identically. The remaining term simplifies:

$$\begin{aligned} \nabla ^*{\bar{e}}= & {} \frac{i}{12}{\mathcal {H}}(e^* \wedge eh^* \wedge e \wedge e^*) \nonumber \\= & {} \frac{i}{12}(e^* \wedge eh^* \wedge e \wedge e^*)\nonumber \\= & {} -\frac{i}{72}(e^* \wedge e\xi )\wedge (\xi ^{\dagger }e \wedge e^*) \nonumber \\= & {} \frac{i}{72}(e^* \wedge e\xi )\wedge (e^* \wedge e\xi )^{\dagger }. \end{aligned}$$
(68)

Now let us write \(\xi = \alpha U^1+\beta U^2\) for some complex functions \(\alpha \) and \(\beta \). After a long straightforward calculation one reaches, on-shell, the equality

$$\begin{aligned} \nabla ^*{\bar{e}}=0. \end{aligned}$$
(69)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dereli, T., Şenikoğlu, Y. Weyl neutrinos in plane symmetric spacetimes. Gen Relativ Gravit 55, 126 (2023). https://doi.org/10.1007/s10714-023-03175-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03175-8

Keywords

Navigation