Skip to main content
Log in

Synthesis and Structure of the (µ2-OP(O)Ph2)-Linked Dimeric Amide Lanthanum Complex {[\({\text{Pzl}}_{2}^{{{\text{Me2}}}}\)CP(O)Ph2]La[N(SiMe3)2](µ2-OP(O)Ph2)}2 Bearing the Tridentate Heteroscorpionate Ligand. Investigation of the Catalytic Activity in rac-Lactide and ε-Caprolactone Polymerization

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The dimeric amide lanthanum complex {[\({\text{Pzl}}_{{\text{2}}}^{{{\text{Me2}}}}\)CP(O)Ph2]La[N(SiMe3)2](µ2-OP(O)Ph2)}2 (PzlMe2 is 3,5-dimethylpyrazole) bearing the N,N,O-tridentate heteroscorpionate ligand is synthesized. As found by X-ray diffraction (XRD) (CIF file CCDC no. 2212274), the complex is binuclear and its lanthanum ions are linked by two bridging monoanionic diphenyl phosphinate ligands. The synthesized lanthanum complex demonstrates a high catalytic activity in the polymerization with ring opening of rac-lactide and ε-caprolactone providing the quantitative conversion of 500 equivalents of the monomer to the polymer at room temperature within 360–720 min for rac-lactide and 10–30 min for ε-caprolactone. The formed polylactides are characterized by the atactic microstructure (Pr = 0.54–0.56) and polydispersity indices (PDI) of 1.6–2.5, whereas for polycaprolactone PDI = 2.1–2.8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Hou, Z. and Nishiura, M., Nat. Chem., 2010, vol. 2, p. 257. https://doi.org/10.1038/nchem.595

    Article  CAS  PubMed  Google Scholar 

  2. Trifonov, A.A. and Lyubov, D.M., Coord. Chem. Rev., 2017, vol. 340, p. 10. https://doi.org/10.1016/j.ccr.2016.09.013

    Article  CAS  Google Scholar 

  3. Carpentier, J.-F., Gromada, J., and Mortreux, A., Coord. Chem. Rev., 2004, vol. 248, p. 397. https://doi.org/10.1016/j.ccr.2004.02.002

    Article  CAS  Google Scholar 

  4. Friebe, O.N., Obrecht, W., and Zimmermann, M., Adv. Polym. Sci., 2006, vol. 204, p. 1. https://doi.org/10.1007/12_094

    Article  CAS  Google Scholar 

  5. Anwander, R., Törnroos, K.W., and Zimmermann, M., Angew. Chem., Int. Ed. Engl., 2008, vol. 47, p. 775. https://doi.org/10.1002/anie.200703514

    Article  CAS  PubMed  Google Scholar 

  6. Cui, D., Liu, B., Wang, B., et al., Struct. Bond., 2010, vol. 137, p. 49. https://doi.org/10.1007/430.2010.16

    Article  Google Scholar 

  7. Cotton, S.A., Coord. Chem. Rev., 1997, vol. 160, p. 93. https://doi.org/10.1016/S0010-8545(96)01340-9

    Article  CAS  Google Scholar 

  8. Lyubov, D.M., Tolpygin, A.O., and Trifonov, A.A., Coord. Chem. Rev., 2019, vol. 392, p. 83. https://doi.org/10.1016/j.ccr.2019.04.013

    Article  CAS  Google Scholar 

  9. Aubrecht, K.B., Chang, K., Hillmyer, M.A., and Tolman, W.B., J. Polym. Sci., Part A, 2001, vol. 39, p. 284. https://doi.org/10.1002/1099-0518(20010115)39

    Article  CAS  Google Scholar 

  10. Tolpygin, A.O., Linnikova, O.A., Glukhova, T.A., et al., RSC Adv., 2016, vol. 6, p. 17913. https://doi.org/10.1039/C5RA27960G

    Article  CAS  Google Scholar 

  11. Nakayama, Y. and Yasuda, H., J. Organomet. Chem., 2004, vol. 689, p. 4489. https://doi.org/10.1016/j.jorganchem.2004.05.056

    Article  CAS  Google Scholar 

  12. Piers, W.E. and Emslie, D.J.H., Coord. Chem. Rev., 2002, vols. 233–234, p. 131. https://doi.org/10.1016/S0010-8545(02)00016-4

    Article  Google Scholar 

  13. Howe, R.G., Tredget, C.S., Lawrence, S.C., et al., Chem. Commun., 2006, p. 223. https://doi.org/10.1039/B513927A

  14. Zeimentz, P.M., Arndt, S., Elvidge, B.R., and Okuda, J., Chem. Rev., 2006, vol. 106, p. 2404. https://doi.org/10.1021/cr050574s

    Article  CAS  PubMed  Google Scholar 

  15. Hou, Z., Luo, Y., and Li, X., J. Organomet. Chem., 2006, vol. 691, p. 3114. https://doi.org/10.1016/j.jorganchem.2006.01.055

    Article  CAS  Google Scholar 

  16. Molander, G.A. and Romero, J.A.C., Chem. Rev., 2002, vol. 102, p. 2161. https://doi.org/10.1021/cr010291+

    Article  CAS  PubMed  Google Scholar 

  17. Trifonov, A.A., Basalov, I.V., and Kissel, A.A., Dalton Trans., 2016, vol. 45, p. 19172. https://doi.org/10.1039/C6DT03913H

    Article  CAS  PubMed  Google Scholar 

  18. Kissel, A.A., Lyubov, D.M., Mahrova, T.V., et al., Dalton Trans., 2013, vol. 42, p. 9211. https://doi.org/10.1039/C3DT33108C

    Article  CAS  PubMed  Google Scholar 

  19. Khristolyubov, D.O., Lyubov, D.M., and Trifonov, A.A., Russ. Chem. Rev., 2021, vol. 90, p. 529. https://doi.org/10.1070/RCR4992

    Article  Google Scholar 

  20. Shannon, R.D., Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, vol. 32, p. 751. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  21. Jia, Y.Q., J. Solid State Chem., 1991, vol. 95, p. 184. https://doi.org/10.1016/0022-4596(91)90388-x

    Article  CAS  Google Scholar 

  22. Morss, L.R., Chem. Rev., 1976, vol. 76, p. 827. https://doi.org/10.1021/cr60304a007

    Article  CAS  Google Scholar 

  23. Trifonov, A.A., Coord. Chem. Rev., 2010, vol. 254, p. 1327. https://doi.org/10.1016/j.ccr.2010.01.008

    Article  CAS  Google Scholar 

  24. Otero, A., Lara-Sanchez, A., Castro-Osma, J.A., et al., New J. Chem., 2015, vol. 39, p. 7672. https://doi.org/10.1039/C5NJ00930H

    Article  CAS  Google Scholar 

  25. Bochkarev, M.N., Zakharov, L.N., and Kalinina, G.S., Top Organomet. Chem., 1999, p. 285.

  26. Barker, J. and Kilner, M., Coord. Chem. Rev., 1994, vol. 133, p. 219. https://doi.org/10.1016/0010-8545(94)80059-6

    Article  CAS  Google Scholar 

  27. Trifonov, A.A., Russ. Chem. Rev., 2007, vol. 76, p. 1051. https://doi.org/10.1070/RC2007v076n11ABEH003693

    Article  CAS  Google Scholar 

  28. Yap, G.P.A., Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2013, vol. 69, p. 937. https://doi.org/10.1107/S0108270113019902

    Article  CAS  Google Scholar 

  29. Trofimenko, S., Scorpionates: The Coordination Chemistry of Polypyrazolylborate Ligands, London: Imperial College, 1998.

    Google Scholar 

  30. Reger, D.L., Comments Inorg. Chem., 1999, vol. 21, p. 1. https://doi.org/10.1080/02603599908020413

    Article  CAS  Google Scholar 

  31. Otero, A., Fernandez-Baeza, J., Antinolo, A., et al., Dalton Trans., 2004, p. 1499. https://doi.org/10.1039/B401425A

  32. Pettinari, C. and Pettinari, R., Coord. Chem. Rev., 2005, vol. 249, p. 525. https://doi.org/10.1016/j.ccr.2004.05.010

    Article  CAS  Google Scholar 

  33. Mou, Z., Liu, B., Liu, X., et al., Macromolecules, 2014, vol. 47, p. 2233. https://doi.org/10.1021/ma500209t

    Article  CAS  Google Scholar 

  34. Ballard, D.G.H., Coutis, A., Holton, J., et al., Chem. Commun., 1978, p. 994. https://doi.org/10.1039/C39780000994

  35. Burger, B.J., Thompson, M.E., Cotter, W.D., and Bercaw, J.E., J. Am. Chem. Soc., 1990, vol. 112, p. 1566. https://doi.org/10.1021/ja00160a041

    Article  CAS  Google Scholar 

  36. Hou, Z., Zhang, Y., Nishiura, M., and Wakatsuki, Y., Organometallics, 2003, vol. 22, p. 129. https://doi.org/10.1021/om020742w

    Article  CAS  Google Scholar 

  37. Li, X. and Hou, Z., Macromolecules, 2005, vol. 38, p. 6767. https://doi.org/10.1021/ma051323o

    Article  CAS  Google Scholar 

  38. Otero, A., Lara-Sanchez, A., Nájera, C., et al., Organometallics, 2012, vol. 31, p. 2244. https://doi.org/10.1021/om2011672

    Article  CAS  Google Scholar 

  39. Pettinari, C. and Pettinari, R., Coord. Chem. Rev., 2005, vol. 249, p. 663. https://doi.org/10.1016/j.ccr.2004.08.017

    Article  CAS  Google Scholar 

  40. Otero, A., Fernández-Baeza, J., Antinolo, A., et al., J. Am. Chem. Soc., 2004, vol. 126, p. 1330. https://doi.org/10.1021/ja0391558

    Article  CAS  PubMed  Google Scholar 

  41. Schädle, D., Maichle-Mössmer, C., Schädle, C., and Anwander, R., Chem.-Eur. J., 2014, vol. 21, p. 662. https://doi.org/10.1002/chem.201404792

    Article  CAS  PubMed  Google Scholar 

  42. Marques, N., Sella, A., and Takats, J., Chem. Rev., 2002, vol. 102, p. 2137. https://doi.org/10.1021/cr010327y

    Article  CAS  PubMed  Google Scholar 

  43. Trofimenko, S., Polyhedron, 2004, vol. 23, p. 197. https://doi.org/10.1016/j.poly.2003.11.013

    Article  CAS  Google Scholar 

  44. Bigmore, H.R., Lawrence, S.C., Mountford, P., and Tredget, C.S., Dalton Trans., 2005, p. 635. https://doi.org/10.1039/B413121E

  45. Gibson, V.C. and Spitzmesser, S.K., Chem. Rev., 2003, vol. 103, p. 283. https://doi.org/10.1021/cr980461r

    Article  CAS  PubMed  Google Scholar 

  46. Martínez, J., Otero, A., Lara-Sánchez, A., et al., Organometallics, 2016, vol. 35, p. 1802. https://doi.org/10.1021/acs.organomet.6b00203

    Article  CAS  Google Scholar 

  47. Bradley, D.C., Ghotra, J.S., and Hart, F.A., Dalton Trans., 1973, vol. 10, p. 1021. https://doi.org/10.1039/DT9730001021

    Article  Google Scholar 

  48. Barakat, I., Dubois, P., Jerome, R., and Teyssie, P., J. Polym. Sci., Part A, 1993, vol. 31, p. 505. https://doi.org/10.1002/pola.1993.080310222

    Article  CAS  Google Scholar 

  49. APEX3, Madison: Bruker AXS Inc., 2018.

  50. Krause, L., Herbst-Irmer, R., Sheldrick, G.M., and Stalke, D., J. Appl. Crystallogr., 2015, vol. 48, p. 3. https://doi.org/10.1107/S1600576714022985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sheldrick, G., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  52. Krieck, S., Koch, A., Hinze, K., et al., Eur. J. Inorg. Chem., 2016, p. 2332. https://doi.org/10.1002/ejic.201501263

  53. Wingerter, S., Pfeiffer, M., Baier, F., et al., Z. Anorg. Allg. Chem., 2000, vol. 626, p. 1121. https://doi.org/10.1002/(SICI)1521-3749(200005)626:5<1121::AID-ZAAC1121>3.0.CO;2-I

    Article  CAS  Google Scholar 

  54. Beswick, M.A., Cromhout, N.L., Harmer, C.N., et al., Chem. Commun., 1997, p. 583. https://doi.org/10.1039/A608202E

  55. Al-Shboul, T.M.A., Volland, G., Gorls, H., et al., Inorg. Chem., 2012, vol. 51, p. 7903. https://doi.org/10.1021/ic300975s

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, Z., Xu, X., Li, W., et al., Inorg. Chem., 2009, vol. 48, p. 5715. https://doi.org/10.1021/ic802177y

    Article  CAS  PubMed  Google Scholar 

  57. Litlabo, R., Zimmermann, M., Saliu, K., et al., Angew. Chem., Int. Ed. Engl., 2008, vol. 47, p. 9560. https://doi.org/10.1002/anie.200803856

    Article  CAS  PubMed  Google Scholar 

  58. Dong, X. and Robinson, J.R., Chem. Sci., 2020, vol. 11, p. 8184. https://doi.org/10.1039/D0SC03507F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sugiyama, H., Korobkov, I., and Gambarotta, S., Inorg. Chem., 2004, vol. 43, p. 5771. https://doi.org/10.1021/ic049820t

    Article  CAS  PubMed  Google Scholar 

  60. Gu, X.-Y., Han, X.-Z., Yao, Y.-M., et al., J. Organomet. Chem., 2010, vol. 695, p. 2726. https://doi.org/10.1016/j.jorganchem.2010.07.037

    Article  CAS  Google Scholar 

  61. Zhang, J., Qiu, J., Yao, Y., et al., Organometallics, 2012, vol. 31, p. 3138. https://doi.org/10.1021/om300036a

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The workers of the Nesmeyanov Institute of Organoelement Compounds (Russian Academy of Sciences) are grateful to the Ministry of Science and Higher Education of the Russian Federation for financial support.

Funding

The XRD and NMR studies of the compounds were carried out using the equipment of the Center for Collective Use “Analytical Center of Institute of Organometallic Chemistry of Russian Academy of Sciences” and supported by the project “Provision of Development of Material Technical Infrastructure of Centers for Collective Use of Scientific Equipment” (unique identifier RF−2296.61321X0017, agreement no. 075-15-2021-670).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Trifonov.

Ethics declarations

The author of this work declares that they has no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rad’kova, N.Y., Cherkasov, A.V. & Trifonov, A.A. Synthesis and Structure of the (µ2-OP(O)Ph2)-Linked Dimeric Amide Lanthanum Complex {[\({\text{Pzl}}_{2}^{{{\text{Me2}}}}\)CP(O)Ph2]La[N(SiMe3)2](µ2-OP(O)Ph2)}2 Bearing the Tridentate Heteroscorpionate Ligand. Investigation of the Catalytic Activity in rac-Lactide and ε-Caprolactone Polymerization. Russ J Coord Chem 49, 710–717 (2023). https://doi.org/10.1134/S1070328423600717

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328423600717

Keywords:

Navigation