Skip to main content
Log in

Coordination Polymer or Cluster: Zinc Bis(3,5-di-tert-octyl-semiquinolate) with Pyrazine

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

New zinc bis-o-semiquinolate complexes based on 3,5-di-tert-octyl-o-benzoquinone bearing the N-donor ligand (pyrazine) coordinated to the metal are synthesized. Two different products can be obtained depending on the synthesis method: coordination polymer (direct oxidation of metallic zinc with o-quinone (CIF file CCDC no. 2250574 (I)) or polynuclear cluster (exchange reaction (CIF file CCDC no. 2250575 (II)). The coordination polymer is linear and free of intermolecular π,π interactions between the aromatic fragments of the adjacent molecules. The magnetochemical study of complexes I and II shows that intramolecular antiferromagnetic exchange interactions between spins of the o-semiquinolate radical centers dominate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Pierpont, C.G., Coord. Chem. Rev., 2001, vols. 219−221.

  2. Ershova, I.V., Piskunov, A.V., and Cherkasov, V.K., Russ. Chem. Rev., 2020, vol. 89, p. 1157. https://doi.org/10.1070/RCR4957

    Article  CAS  Google Scholar 

  3. Bubnov, M.P., Piskunov, A.V., Zolotukhin, A.A., et al., Russ. J. Coord. Chem., 2020, vol. 46, p. 224. https://doi.org/10.31857/S0132344X20030019

  4. Kaim, W., Das, A., Fiedler, J., et al., Coord. Chem. Rev., 2020, vol. 404, p. e213114.

    Article  Google Scholar 

  5. Rajput, A., Sharma, A.K., Barman, S.K.A., et al., Coord. Chem. Rev., 2020, vol. 414, p. e213240.

    Article  Google Scholar 

  6. Pashanova, K.I., Poddel’sky, A.I., and Piskunov, A.V., Coord. Chem. Rev., 2022, vol. 459, p. 214399.

    Article  CAS  Google Scholar 

  7. Chegerev, M.G. and Piskunov, A.V., Russ. J. Coord. Chem., 2018, vol. 44, p. 258. https://doi.org/10.7868/S0132344X18020044

    Article  CAS  Google Scholar 

  8. Ershova, I.V. and Piskunov, A.V., Russ. J. Coord. Chem, 2020, vol. 46, no. 3, p. 154. https://doi.org/10.31857/S0132344X20030020

    Article  CAS  Google Scholar 

  9. Pierpont, C.G., Coord. Chem. Rev., 2001, vols. 216–217, p. 99.

    Article  Google Scholar 

  10. Buchanan, R.M. and Pierpont, C.G., J. Am. Chem. Soc., 1980, vol. 102, p. 4951.

    Article  CAS  Google Scholar 

  11. Shapovalova, S.O., Guda, A.A., Bubnov, M.P., et al., Chem. Lett., 2021, vol. 50, p. 1933.

    Article  CAS  Google Scholar 

  12. Bubnov, M.P., Skorodumova, N.A., Fukin, G.K., et al., Polyhedron, 2021, vol. 209, p. 115485.

    Article  CAS  Google Scholar 

  13. Tezgerevska, T., Alley, K.G., and Boskovic, C., Coord. Chem. Rev., 2014, vol. 268, p. 23.

    Article  CAS  Google Scholar 

  14. Drath, O., Gable, R.W., Moubaraki, B., et al., Inorg. Chem., 2016, vol. 55, p. 4141.

    Article  CAS  PubMed  Google Scholar 

  15. Hendrickson, D.N. and Pierpont, C.G., Top. Curr. Chem., 2004, vol. 234, p. 63.

    Article  CAS  Google Scholar 

  16. Jung, O.-S. and Pierpont, C.G., J. Am. Chem. Soc., 1994, vol. 116, p. 2229.

    Article  CAS  Google Scholar 

  17. Bubnov, M.P., Kozhanov, K.A., Skorodumova, N.A., et al., Inorg. Chem., 2020, vol. 59, p. 6679.

    Article  CAS  PubMed  Google Scholar 

  18. Zolotukhin, A.A., Bubnov, M.P., Arapova, A.V., et al., Inorg. Chem., 2017, vol. 56, p. 14751.

    Article  CAS  PubMed  Google Scholar 

  19. Guda, A.A., Chegerev, M.G., Starikov, A.G., et al., J. Phys.: Condens. Matter, 2021, vol. 33, p. 215405.

    CAS  Google Scholar 

  20. Ilyakina, E.V., Poddel’sky, A.I., Cherkasov, V.K., et al., Mendeleev Commun., 2012, vol. 22, p. 208.

    Article  CAS  Google Scholar 

  21. Cherkasov, V.K., Abakumov, G.A., Grunova, E.V., et al., Chem.-Eur. J., 2006, vol. 12, p. 3916.

    Article  CAS  PubMed  Google Scholar 

  22. Arsenyeva, K.V., Klimashevskaya, A.V., Pashanova, K.I., et al., Appl. Organomet. Chem., 2022, vol. 36, no. 4., р. е6593.

  23. Ershova, I.V., Meshcheryakova, I.N., Trofimova, O.Y., et al., Inorg. Chem., 2021, vol. 60, p. 12309.

    Article  CAS  PubMed  Google Scholar 

  24. Ershova, I.V., Meshcheryakova, I.N., Trofimova, O.Y., et al., Inorg. Chim. Acta, 2022, vol. 535, p. 121031.

    Article  Google Scholar 

  25. Pashanova, K.I., Bitkina, V.O., Yakushev, I.A., et al., Molecules, 2021, vol. 26, p. 4622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maleeva, A.V., Ershova, I.V., Trofimova, O.Y., et al., Mendeleev Commun., 2022, vol. 32, p. 83.

    Article  CAS  Google Scholar 

  27. Ershova, I.V., Maleeva, A.V., Aysin, R.R., et al., Russ. Chem. Bull., 2023, vol. 72, no. 1, p. 193. https://doi.org/10.1007/s11172-023-3724-2

    Article  CAS  Google Scholar 

  28. Maleeva, A.V., Trofimova, O.Y., Ershova, I.V., et al., Russ. Chem. Bull., 2022, vol. 71, p. 1441. https://doi.org/10.1007/s11172-022-3550-y

    Article  CAS  Google Scholar 

  29. Cameron, L.A., Ziller, J.W., and Heyduk, A.F., Chem. Sci., 2016, vol. 7, p. 1807.

    Article  CAS  PubMed  Google Scholar 

  30. Kramer, W.W., Cameron, L.A., Zarkesh, R.A., et al., Inorg. Chem., 2014, vol. 53, p. 8825.

    Article  CAS  PubMed  Google Scholar 

  31. Archer, S. and Weinstein, J.A., Coord. Chem. Rev., 2012, vol. 256, p. 2530.

    Article  CAS  Google Scholar 

  32. BaniKhaled, M.O., Becker, J.D. Koppang, M., et al., Cryst. Growth Des., 2016, vol. 16, p. 1869.

    Article  Google Scholar 

  33. Tichnell, C.R., Daley, D.R., Stein, B.W., et al., J. Am. Chem. Soc., 2019, vol. 141, p. 3986.

    Article  CAS  PubMed  Google Scholar 

  34. Stein, B.W., Tichnell, C.R., Chen, J., et al., J. Am. Chem. Soc., 2018, vol. 140, p. 2221.

    Article  CAS  PubMed  Google Scholar 

  35. Kirk, M.L., Shultz, D.A., Chen, J., et al., J. Am. Chem. Soc., 2021, vol. 143, p. 10519.

    Article  CAS  PubMed  Google Scholar 

  36. Kirk, M.L., Shultz, D.A., Hewitt, P., et al., Chem. Sci., 2021, vol. 12, p. 13704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kirk, M.L., Shultz, D.A., Hewitt, P., et al., J. Am. Chem. Soc., 2022, vol. 144, p. 12781.

    Article  CAS  PubMed  Google Scholar 

  38. Shavaleev, N.M., Davies, E.S., Adams, H., et al., Inorg. Chem., 2008, vol. 47, p. 1532.

    Article  CAS  PubMed  Google Scholar 

  39. Yang, J., Kersi, D., Giles, L.J., et al., Inorg. Chem., 2014, vol. 53, p. 4791.

    Article  CAS  PubMed  Google Scholar 

  40. Sobottka, S., Noßler, M., Ostericher, A.L., et al., Chem.-Eur. J., 2020, vol. 26, p. 1314.

    Article  CAS  PubMed  Google Scholar 

  41. Ovcharenko, V.I. and Sagdeev, R.Z., Russ. Chem. Rev., 1999, vol. 68, p. 345.

    Article  CAS  Google Scholar 

  42. Koivisto, B.D. and Hicks, R.G., Coord. Chem. Rev., 2005, vol. 249, p. 2612.

    Article  CAS  Google Scholar 

  43. Ratera, I. and Veciana, J., Chem. Soc. Rev., 2012, vol. 41, p. 303.

    Article  CAS  PubMed  Google Scholar 

  44. Iwamura, H., Polyhedron, 2013, vol. 66, p. 3.

    Article  CAS  Google Scholar 

  45. Faust, T.B. and D’Alessandro, D.M., RSC Adv., 2014, vol. 4, p. 17498.

    Article  CAS  Google Scholar 

  46. Vostrikova, K.E., Coord. Chem. Rev., 2008, vol. 252, nos. 12–14, p. 1409.

    Article  CAS  Google Scholar 

  47. Halcrow, M.A., Spin-Crossover Materials. Properties and Applications, New York: Wiley, 2013.

    Book  Google Scholar 

  48. Poddel’sky, A.I., Cherkasov, V.K., and Abakumov, G.A., Coord. Chem. Rev., 2009, vol. 253, p. 291.

    Article  Google Scholar 

  49. Paretzki, A., Hubner, R., Ye, S., et al., Mater. Chem. C, 2015, vol. 3, p. 4801.

    Article  CAS  Google Scholar 

  50. Paretzki, A., Bubrin, M., Fiedler, J., et al., Chem.-Eur. J., 2014, vol. 20, p. 5414.

    Article  CAS  PubMed  Google Scholar 

  51. Piskunov, A.V., Maleeva, A.V., Bogomyakov, A.S., et al., Polyhedron, 2015, vol. 102, p. 715.

    Article  CAS  Google Scholar 

  52. Piskunov, A.V., Maleeva, A.V., Fukin, G.K., et al., Inorg. Chim. Acta, 2017, vol. 455, p. 213.

    Article  CAS  Google Scholar 

  53. Piskunov, A.V., Maleeva, A.V., Bogomyakov, A.S., et al., Russ. Chem. Bull., 2017, vol. 66, p. 1618.

    Article  CAS  Google Scholar 

  54. Bellan, E.V., Poddel’sky, A.I., Protasenko, N.A., et al., Inorg. Chem. Commun., 2014, vol. 50, p. 1.

    Article  CAS  Google Scholar 

  55. Piskunov, A.V., Maleeva, A.V., Bogomyakov, A.S., et al., Russ. J. Coord. Chem., 2019, vol. 45, p. 309. https://doi.org/10.1134/S0132344X19050025

    Article  CAS  Google Scholar 

  56. Perrin, D.D., Armarego, W.L.F., and Perrin, D.R., Purification of Laboratory Chemicals, Oxford: Perrin Pergamon, 1980.

    Google Scholar 

  57. Kocherova, T.N., Druzhkov, N.O., Arsenyev, M.V., et al., Russ. Chem. Bull., 2023, vol. 72, no. 5, p. 1192.

    Article  CAS  Google Scholar 

  58. Piskunov, A.V., Maleeva, A.V., Abakumov, G.A., et al., Russ. J. Coord. Chem., 2011, vol. 37, p. 243. https://doi.org/10.1134/S1070328411030092

    Article  CAS  Google Scholar 

  59. Piskunov, A.V., Mescheryakova, I.N., Bogomyakov, A.S., et al., Inorg. Chem. Commun., 2009, vol. 12, p. 1067.

    Article  CAS  Google Scholar 

  60. Bruker, APEX3, SAINT, and, SADABS, Madison: Bruker, AXS, Inc., 2016.

  61. Krause, L., Herbst-Irmer, R., Sheldrick, G.M., and Stalke, D., J. Appl. Crystallogr., 2015, vol. 48, p. 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Adv., 2015, vol. 71, p. 3.

    Article  Google Scholar 

  63. Sheldrick, G.M., Acta Crystallogr. Sect. C: Struct. Chem., 2015, vol. 71, p. 3.

    Article  Google Scholar 

  64. Spek, A.L., Acta Crystallogr. Sect. C: Struct. Chem., 2015, vol. 71, p. 9.

    Article  CAS  Google Scholar 

  65. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, p. 339.

    Article  CAS  Google Scholar 

  66. Brown, S.N., Inorg. Chem., 2012, vol. 51, p. 1251.

    Article  CAS  PubMed  Google Scholar 

  67. Glavinović, M., Qi, F., Katsenis, A.D., et al., Chem. Sci., 2016, vol. 7, p. 707.

    Article  PubMed  Google Scholar 

  68. Piskunov, A.V., Meshcheryakova, I.N., Maleeva, A.V., et al., Eur. J. Inorg. Chem., 2014, no. 20, p. 3252.

  69. Batsanov, S.S., Russ. J. Inorg. Chem., 1991, vol. 36, no. 12, p. 1694.

    Google Scholar 

  70. Emsley, J., Elements, Oxford: Clarendon, 1991.

    Google Scholar 

  71. Dankert, F. and Hanisch, C., Inorg. Chem., 2019, vol. 58, p. 3518.

    Article  CAS  PubMed  Google Scholar 

  72. Sugimoto, K., Takaya, H., Maekawa, M., et al., Cryst. Growth Des., 2018, vol. 18, p. 571.

    Article  CAS  Google Scholar 

  73. Dange, D., Choong, S.L., Schenk, C., et al., Dalton Trans., 2012, vol. 41, p. 9304.

    Article  CAS  PubMed  Google Scholar 

  74. Li, F., Yin, H., and Wang, D., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2006, vol. 62, p. m437.

    Article  CAS  Google Scholar 

  75. Zábranský, M., Císarováa, I., and Stĕpnička, P., Dalton Trans., 2015, vol. 44, p. e14494.

    Article  Google Scholar 

  76. Raston, C.L., Whitaker, C.R., and White, A.H., Aust. J. Chem., 1989, vol. 42, p. 1393.

    Article  CAS  Google Scholar 

  77. Voegel, J.C., Thierry, J.C., and Weiss, R., Acta Crystallogr., Sect. B: Struct. Sci., 1974, vol. 30, p. 56.

    Article  CAS  Google Scholar 

  78. Knölker, H.-J., Baum, E., Goesmann, H., et al., Angew. Chem., Int. Ed. Engl., 1999, vol. 38, p. 2064.

    Article  PubMed  Google Scholar 

  79. Ozarowski, A., McGarvey, B.R., Peppe, C., et al., J. Am. Chem. Soc., 1991, vol. 113, p. 3288.

    Article  CAS  Google Scholar 

  80. Ovcharenko, V.I., Gorelik, E.V., Fokin, S.V., et al., J. Am. Chem. Soc., 2007, vol. 129, p. 10512.

    Article  CAS  PubMed  Google Scholar 

  81. Piskunov, A.V., Ershova, I.V., Bogomyakov, A.S., et al., Inorg. Chem., 2015, vol. 54, p. 6090.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out using the equipment of the Center for Collective Use “Analytical Center of Institute of Organometallic Chemistry of Russian Academy of Sciences” and supported by the project “Provision of Development of Material Technical Infrastructure of Centers for Collective Use of Scientific Equipment” (unique identifier RF–2296.61321X0017, agreement no. 075-15-2021-670). The XRD studies of complexes I and II were conducted using the equipment of the Center for Collective Use of Physical Methods of Investigation at the Kurnakov Institute of General and Inorganic Chemistry (Russian Academy of Sciences).

Funding

This work was supported by the Council on Grants of the President of the Russian Federation aimed at supporting leading scientific schools, project no. NSh-403.2022.1.3.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Maleeva or A. V. Piskunov.

Ethics declarations

The author of this work declares that they has no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleeva, A.V., Trofimova, O.Y., Kocherova, T.N. et al. Coordination Polymer or Cluster: Zinc Bis(3,5-di-tert-octyl-semiquinolate) with Pyrazine. Russ J Coord Chem 49, 718–729 (2023). https://doi.org/10.1134/S1070328423600742

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328423600742

Keywords:

Navigation