Skip to main content
Log in

Complexes of Silver 1,1,1,5,5,6,6,6-Octafluorohexane-2,4-dionate with π-Donor Ligands: Synthesis, Structure, and Thermal Properties

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

Two new Ag(I) complexes with 1,1,1,5,5,6,6,6-octafluorohexane-2,4-dionate ion (Ofhac) and π‑donor neutral ligands, vinyltriethylsilane (VTES) or cycloocta-1,5-diene (COD), were synthesized with the goal to expand the library of silver precursors for chemical vapor deposition. The products were characterized by elemental analysis and IR and NMR spectroscopy. The complex [Ag(VTES)(Ofhac)] (I) was liquid under standard conditions; the temperature of its crystallization was below –20°C. Treatment of I with benzene gave rise to crystals of [Ag4(C6H6)2(Ofhac)4] (II), which was confirmed by NMR and X-ray diffraction (CCDC no. 2232810). The structure of [Ag(COD)(Ofhac)]2 (III) was established by X-ray diffraction (CCDC no. 2232809). The binuclear molecules are formed due to the μ21(O):κ1(O') function of the Ofhac ligands (Ag–O, 2.458(2)–2.461(2) Å), while COD is κ222-coordinated (Ag–C, 2.420(17)–2.684(11) Å). The thermal properties of I and III in comparison with analogues containing 1,1,1,5,5,5-hexafluoropentane-2,4-dionate ion (Hfac) were studied by thermogravimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Leskelä, M., Ritala, M., and Nilsen, O., MRS Bull., 2011, vol. 36, no. 11, p. 877. https://doi.org/10.1557/mrs.2011.240

    Article  CAS  Google Scholar 

  2. Piszczek, P. and Radtke, A., in Noble and Precious Metals—Properties, Nanoscale Effects and Applications, Seehra, M.S. and Bristow, A.D., Eds., London: IntechOpen, 2018, p. 187. https://doi.org/10.5772/intechopen.71571

  3. Hagen, D.J., Pemble, M.E., and Karppinen, M., Appl. Phys. Rev., 2019, vol. 6, no. 4, p. 041309. https://doi.org/10.1063/1.5087759

    Article  CAS  Google Scholar 

  4. Wack, S., Lunca Popa, P., Adjeroud, N., et al., ACS Appl. Mater. Interfaces, 2020, vol. 12, no. 32, p. 36329. https://doi.org/10.1021/acsami.0c08606

    Article  CAS  PubMed  Google Scholar 

  5. Mandia, D.J., Zhou, W., Albert, J., et al., Chem. Vapor Depos., 2015, vol. 21, nos. 1–3, p. 4. https://doi.org/10.1002/cvde.201400059

    Article  CAS  Google Scholar 

  6. Radtke, A., Grodzicka, M., Ehlert, M., et al., J. Clin. Med., 2019, vol. 8, no. 3, p. 334. https://doi.org/10.3390/jcm8030334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Basova, T.V., Vikulova, E.S., Dorovskikh, S.I., et al., Mater. Des., 2021, vol. 204, p. 109672. https://doi.org/10.1016/j.matdes.2021.109672

    Article  CAS  Google Scholar 

  8. Liu, X., Gan, K., Liu, H., et al., Dental Mater., 2017, vol. 33, no. 9, p. e348. https://doi.org/10.1016/j.dental.2017.06.014

    Article  CAS  Google Scholar 

  9. Geng, H., Poologasundarampillai, G., Todd, N., et al., ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 25, p. 21169. https://doi.org/10.1021/acsami.7b05150

    Article  CAS  PubMed  Google Scholar 

  10. Radtke, A., Jedrzejewski, T., Kozak, W., et al., Nanomaterials, 2017, vol. 7, no. 7, p. 193. https://doi.org/10.3390/nano7070193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nazarov, D., Ezhov, I., Yudintceva, N., et al., J. Funct. Biomater., 2022, vol. 13, no. 2, p. 62. https://doi.org/10.3390/jfb13020062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zanotto, L., Benetollo, F., Natali, M., et al., Chem. Vapor Depos., 2004, vol. 10, no. 4, p. 207. https://doi.org/10.1002/cvde.200306290

    Article  CAS  Google Scholar 

  13. Mishra, S. and Daniele, S., Chem. Rev., 2015, vol. 115, no. 16, p. 8379. https://doi.org/10.1021/cr400637c

    Article  CAS  PubMed  Google Scholar 

  14. Liu, H., Battiato, S., Pellegrino, A.L., et al., Dalton Trans., 2017, vol. 46, no. 33, p. 10986. https://doi.org/10.1039/C7DT01647F

    Article  CAS  PubMed  Google Scholar 

  15. Grodzicki, A., Łakomska, I., Piszczek, P., et al., Coord. Chem. Rev., 2005, vol. 249, nos. 21–22, p. 2232. https://doi.org/10.1016/j.ccr.2005.05.026

    Article  CAS  Google Scholar 

  16. Szłyk, E., Szczęsny, R., and Wojtczak, A., Dalton Trans., 2010, vol. 39, no. 7, p. 1039. https://doi.org/10.1039/B911741E

    Article  Google Scholar 

  17. Madajska, K., Dobrzańska, L., Muzioł, T., et al., Polyhedron, 2022, vol. 227, p. 116149. https://doi.org/10.1016/j.poly.2022.116149

    Article  CAS  Google Scholar 

  18. Sato, H. and Sugawara, S., Inorg. Chem., 1993, vol. 32, no. 10, p. 1941. https://doi.org/10.1021/ic00062a011

    Article  CAS  Google Scholar 

  19. Chi, K.M., Chen, K.H., Peng, S.M., et al., Organometallics, 1996, vol. 15, no. 10, p. 2575. https://doi.org/10.1021/om960013e

    Article  CAS  Google Scholar 

  20. Bailey, A., Corbitt, T.S., Hampden-Smith, M.J., et al., Polyhedron, 1993, vol. 12, no. 14, p. 1785. https://doi.org/10.1016/S0277-5387(00)84613-6

    Article  CAS  Google Scholar 

  21. Partenheimer, W. and Johnson, E.H., Inorg. Chem., 1972, vol. 11, no. 11, p. 2840. https://doi.org/10.1021/ic50117a052

    Article  CAS  Google Scholar 

  22. Karyakin, Yu.V. and Angelov, I.I. Chistye khimicheskie veshchestva (Pure Chemicals), Moscow: Khimiya, 1974.

  23. Kochelakov, D.V., Vikulova, E.S., Kurat’eva, N.V., et al., J. Struct. Chem., 2023, vol. 64, no. 1, p. 82.

    Article  CAS  Google Scholar 

  24. Fadeeva, V.P., Tikhova, V.D., Deryabina, Y.M., et al., J. Struct. Chem., 2014, vol. 55, no. 5, p. 972. https://doi.org/10.1134/S0022476614050278

    Article  CAS  Google Scholar 

  25. Tikhova, V.D., Fadeeva, V.P., Nikulicheva, O.N., et al., Chem. Sustain. Dev. 2022, vol. 30, p. 640. https://doi.org/10.15372/CSD2022427

    Article  Google Scholar 

  26. Gordon, A.J., and Ford, R.A., The Chemist’s Companion. A Handbook of Practical Data, Techniques, and References, New York: Wiley, 1972.

    Google Scholar 

  27. Vikulova, E.S., Sukhikh, T.S., Gulyaev, S.A., et al., Molecules, 2022, vol. 27, no. 3, p. 677. https://doi.org/10.3390/molecules27030677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fulmer, G.R., Miller, A.J.M., Sherden, N.H., et al., Organometallics, 2010, vol. 29, p. 2176. https://doi.org/10.1021/om100106e

    Article  CAS  Google Scholar 

  29. Sheldrick, G.M., Acta Crystallogr., Sect. A: Cryst. Adv., 2015, vol. 71, p. 3. https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  30. Sheldrick, G., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  31. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, p. 339. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  32. Evans, W.J., Giarikos, D.G., Josell, D., et al., Inorg. Chem., 2003, vol. 42, no. 25, p. 8255. https://doi.org/10.1021/ic034649r

    Article  CAS  PubMed  Google Scholar 

  33. Schmidbaur, H. and Schier, A., Angew. Chem., 2015, vol. 54, no. 3, p. 746. https://doi.org/10.1002/anie.201405936

    Article  CAS  Google Scholar 

  34. Doppelt, P., Baum, T.H., and Ricard, L., Inorg. Chem., 1996, vol. 35, no. 5, p. 1286. https://doi.org/10.1021/ic9410102

    Article  CAS  PubMed  Google Scholar 

  35. Black, K., Singh, J., Mehta, D., et al., Sci. Rep., 2016, vol. 6, no. 1, p. 1. https://doi.org/10.1038/srep20814

    Article  CAS  Google Scholar 

  36. Jurczyk, J., Glessi, C., Madajska, K., et al., J. Therm. Anal. Calorim., 2022, vol. 147, no. 3, p. 2187. https://doi.org/10.1007/s10973-021-10616-6

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank M.A. Kurykin (Nesmeyanov Instituted of Organoelement Compounds, Russian Academy of Sciences) for the synthesis of fluorinated β-diketones and S.A. Gulyaev (Novosibirsk State University; Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences) for participation in the primary synthesis of [Ag(COD)(Ofhac)]2. We are grateful to the Chemical Research Center for Collective Use, Siberian Branch, Russian Academy of Sciences (Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences) for conduction of the elemental analysis and to the Center for Collective Use of the Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, for the possibility to collect X-ray diffraction data. The authors thank the Ministry of Science and Higher Education of the Russian Federation (Project nos. 121031700313-8 and 121031700314-5).

Funding

This study was supported by a grant of President of the Russian Federation for the state support of young Russian scientists, Candidates of Sciences (MK-6148.2021.1.3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Vikulova.

Ethics declarations

The author of this work declares that they has no conflicts of interest.

Additional information

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vikulova, E.S., Il’in, I.Y., Sukhikh, T.S. et al. Complexes of Silver 1,1,1,5,5,6,6,6-Octafluorohexane-2,4-dionate with π-Donor Ligands: Synthesis, Structure, and Thermal Properties. Russ J Coord Chem 49, 743–752 (2023). https://doi.org/10.1134/S1070328423600407

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328423600407

Keywords:

Navigation