Skip to main content
Log in

A unifying framework for tangential interpolation of structured bilinear control systems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we consider the structure-preserving model order reduction problem for multi-input/multi-output bilinear control systems by tangential interpolation. We propose a new type of tangential interpolation problem for structured bilinear systems, for which we develop a new structure-preserving interpolation framework. This new framework extends and generalizes different formulations of tangential interpolation for bilinear systems from the literature and also provides a unifying framework. We then derive explicit conditions on the projection spaces to enforce tangential interpolation in different settings, including conditions for tangential Hermite interpolation. The analysis is illustrated by means of three numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Code and data availability

The source code, data and results of the numerical experiments are open source/open access and available at [41].

References

  1. Al-Baiyat, S., Farag, A.S., Bettayeb, M.: Transient approximation of a bilinear two-area interconnected power system. Electr. Power Syst. Res. 26(1), 11–19 (1993). https://doi.org/10.1016/0378-7796(93)90064-L

    Article  Google Scholar 

  2. Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems. Adv. Des. Control, vol. 6. SIAM, Philadelphia, PA (2005). https://doi.org/10.1137/1.9780898718713

  3. Antoulas, A.C., Beattie, C.A., Gugercin, S.: Interpolatory Methods for Model Reduction. Computational Science & Engineering. SIAM, Philadelphia (2020). https://doi.org/10.1137/1.9781611976083

    Book  Google Scholar 

  4. Antoulas, A.C., Gosea, I.V., Ionita, A.C.: Model reduction of bilinear systems in the Loewner framework. SIAM J. Sci. Comput. 38(5), B889–B916 (2016). https://doi.org/10.1137/15M1041432

    Article  MathSciNet  MATH  Google Scholar 

  5. Bai, Z., Skoogh, D.: A projection method for model reduction of bilinear dynamical systems. Linear Algebra Appl. 415(2–3), 406–425 (2006). https://doi.org/10.1016/j.laa.2005.04.032

    Article  MathSciNet  MATH  Google Scholar 

  6. Ball, J.A., Gohberg, I., Rodman, L.: Interpolation of Rational Matrix Functions. Operator Theory: Advances and Applications, vol. 45. Birkhäuser, Basel (1990). https://doi.org/10.1007/978-3-0348-7709-1

  7. Beattie, C., Gugercin, S., Wyatt, S.: Inexact solves in interpolatory model reduction. Linear Algebra Appl. 436(8), 2916–2943 (2012). https://doi.org/10.1016/j.laa.2011.07.015. Special issue dedicated to Danny Sorensen’s 65th birthday, Edited by P. Benner, M. Embree, C. T. Kelley, and R. B. Lehoucq

  8. Beattie, C.A., Gugercin, S.: Interpolatory projection methods for structure-preserving model reduction. Syst. Control Lett. 58(3), 225–232 (2009). https://doi.org/10.1016/j.sysconle.2008.10.016

    Article  MathSciNet  MATH  Google Scholar 

  9. Benner, P., Breiten, T.: Interpolation-based \(\cal{H} _{2}\)-model reduction of bilinear control systems. SIAM J. Matrix Anal. Appl. 33(3), 859–885 (2012). https://doi.org/10.1137/110836742

    Article  MathSciNet  MATH  Google Scholar 

  10. Benner, P., Breiten, T., Damm, T.: Generalized tangential interpolation for model reduction of discrete-time MIMO bilinear systems. Int. J. Control 84(8), 1398–1407 (2011). https://doi.org/10.1080/00207179.2011.601761

    Article  MATH  Google Scholar 

  11. Benner, P., Damm, T.: Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems. SIAM J. Control. Optim. 49(2), 686–711 (2011). https://doi.org/10.1137/09075041X

    Article  MathSciNet  MATH  Google Scholar 

  12. Benner, P., Goyal, P.: Multipoint interpolation of Volterra series and \(\cal{H} _{2}\)-model reduction for a family of bilinear descriptor systems. Syst. Control Lett. 97, 1–11 (2016). https://doi.org/10.1016/j.sysconle.2016.08.008

    Article  MATH  Google Scholar 

  13. Benner, P., Gugercin, S., Werner, S.W.R.: Structure-preserving interpolation of bilinear control systems. Adv. Comput. Math. 47(3), 43 (2021). https://doi.org/10.1007/s10444-021-09863-w

    Article  MathSciNet  MATH  Google Scholar 

  14. Benner, P., Schilders, W., Grivet-Talocia, S., Quarteroni, A., Rozza, G., Silveira, L.M.: Model Order Reduction. Volume 1: System- and Data-Driven Methods and Algorithms. De Gruyter, Berlin (2021). https://doi.org/10.1515/9783110498967

    Book  MATH  Google Scholar 

  15. Benner, P., Schilders, W., Grivet-Talocia, S., Quarteroni, A., Rozza, G., Silveira, L.M.: Model Order Reduction. Volume 2: Snapshot-Based Methods and Algorithms. De Gruyter, Berlin (2021). https://doi.org/10.1515/9783110671490

    Book  MATH  Google Scholar 

  16. Benner, P., Schilders, W., Grivet-Talocia, S., Quarteroni, A., Rozza, G., Silveira, L.M.: Model Order Reduction. Volume 3: Applications. De Gruyter, Berlin (2021). https://doi.org/10.1515/9783110499001

    Book  MATH  Google Scholar 

  17. Breiten, T., Damm, T.: Krylov subspace methods for model order reduction of bilinear control systems. Syst. Control Lett. 59(8), 443–450 (2010). https://doi.org/10.1016/j.sysconle.2010.06.003

    Article  MathSciNet  MATH  Google Scholar 

  18. Choudhary, R., Ahuja, K.: Inexact linear solves in model reduction of bilinear dynamical systems. IEEE Access 7, 72297–72307 (2019). https://doi.org/10.1109/ACCESS.2019.2918722

    Article  Google Scholar 

  19. Condon, M., Ivanov, R.: Krylov subspaces from bilinear representations of nonlinear systems. Compel-Int. J. Comp. Math. Electr. Electron. Eng. 26(2), 399–406 (2007). https://doi.org/10.1108/03321640710727755

    Article  MathSciNet  MATH  Google Scholar 

  20. Feng, L., Benner, P.: A note on projection techniques for model order reduction of bilinear systems. AIP Conf. Proc. 936(1), 208–211 (2007). https://doi.org/10.1063/1.2790110

    Article  MATH  Google Scholar 

  21. Flagg, G.M., Gugercin, S.: Multipoint Volterra series interpolation and \(\cal{H} _{2}\) optimal model reduction of bilinear systems. SIAM J. Matrix Anal. Appl. 36(2), 549–579 (2015). https://doi.org/10.1137/130947830

    Article  MathSciNet  MATH  Google Scholar 

  22. Gallivan, K., Vandendorpe, A., Van Dooren, P.: Model reduction of MIMO systems via tangential interpolation. SIAM J. Matrix Anal. Appl. 26(2), 328–349 (2004). https://doi.org/10.1137/S0895479803423925

    Article  MathSciNet  MATH  Google Scholar 

  23. Goldschmidt, A., Kaiser, E., DuBois, J.L., Brunton, S.L., Kutz, J.N.: Bilinear dynamic mode decomposition for quantum control. New J. Phys. 23, 033035 (2021). https://doi.org/10.1088/1367-2630/abe972

    Article  MathSciNet  Google Scholar 

  24. Gosea, I.V., Pontes Duff, I.: Toward fitting structured nonlinear systems by means of dynamic mode decomposition. In: Benner, P., Breiten, T., Faßbender, H., Hinze, M., Stykel, T., Zimmermann, R. (eds.) Model Reduction of Complex Dynamical Systems. International Series of Numerical Mathematics, vol. 171, pp. 53–74. Birkhäuser, Cham (2021). https://doi.org/10.1007/978-3-030-72983-7_3

    Chapter  MATH  Google Scholar 

  25. Gosea, I.V., Pontes Duff, I., Benner, P., Antoulas, A.C.: Model order reduction of bilinear time-delay systems. In: Proceedings of 18th European Control Conference (ECC), pp. 2289–2294 (2019). https://doi.org/10.23919/ECC.2019.8796085

  26. Gugercin, S., Stykel, T., Wyatt, S.: Model reduction of descriptor systems by interpolatory projection methods. SIAM J. Sci. Comput. 35(5), B1010–B1033 (2013). https://doi.org/10.1137/130906635

    Article  MathSciNet  MATH  Google Scholar 

  27. Hsu, C.S., Desai, U.B., Crawley, C.A.: Realization algorithms and approximation methods of bilinear systems. In: The 22nd IEEE Conference on Decision and Control, pp. 783–788 (1983). https://doi.org/10.1109/CDC.1983.269628

  28. Klus, S., Nüske, F., Peitz, S., Niemann, J.-H., Clementi, C., Schütte, C.: Data-driven approximation of the Koopman generator: model reduction, system identification, and control. Phys. D: Nonlinear Phenom. 406, 132416 (2020). https://doi.org/10.1016/j.physd.2020.132416

    Article  MathSciNet  MATH  Google Scholar 

  29. Mehrmann, V., Stykel, T.: Balanced truncation model reduction for large-scale systems in descriptor form. In: Benner, P., Mehrmann, V., Sorensen, D.C. (eds.) Dimension Reduction of Large-Scale Systems. Lect. Notes Comput. Sci. Eng., vol. 45, pp. 83–115. Springer, Berlin, Heidelberg (2005). https://doi.org/10.1007/3-540-27909-1_3

  30. Mohler, R.R.: Natural bilinear control processes. IEEE Trans. Syst. Sci. Cybern. 6(3), 192–197 (1970). https://doi.org/10.1109/TSSC.1970.300341

    Article  MATH  Google Scholar 

  31. Mohler, R.R.: Bilinear Control Processes: With Applications to Engineering, Ecology and Medicine, Mathematics in Science and Engineering, vol. 106. Academic Press, New York (1973)

    MATH  Google Scholar 

  32. Nüske, F., Peitz, S., Philipp, F., Schaller, M., Worthmann, K.: Finite-data error bounds for Koopman-based prediction and control. J. Nonlinear Sci. 33(1), 14 (2023). https://doi.org/10.1007/s00332-022-09862-1

    Article  MathSciNet  MATH  Google Scholar 

  33. Oberwolfach Benchmark Collection: Steel profile. Hosted at MORwiki—Model Order Reduction Wiki (2005). http://modelreduction.org/index.php/Steel_Profile

  34. Qian, K., Zhang, Y.: Bilinear model predictive control of plasma keyhole pipe welding process. J. Manuf. Sci. Eng. 136(3), 031002 (2014). https://doi.org/10.1115/1.4025337

    Article  Google Scholar 

  35. Rodriguez, A.C., Gugercin, S., Boggaard, J.: Interpolatory model reduction of parameterized bilinear dynamical systems. Adv. Comput. Math. 44(6), 1887–1916 (2018). https://doi.org/10.1007/s10444-018-9611-y

    Article  MathSciNet  MATH  Google Scholar 

  36. Rugh, W.J.: Nonlinear System Theory: The Volterra/Wiener Approach. The Johns Hopkins University Press, Baltimore (1981)

    MATH  Google Scholar 

  37. Saak, J.: Effiziente numerische Lösung eines Optimalsteuerungsproblems für die Abkühlung von Stahlprofilen. Diploma thesis, Universität Bremen, Germany (2003). https://doi.org/10.5281/zenodo.1187041

  38. Saak, J., Köhler, M., Benner, P.: M-M.E.S.S.—The Matrix Equations Sparse Solvers library (version 2.1) (2021). https://doi.org/10.5281/zenodo.4719688. See also: https://www.mpi-magdeburg.mpg.de/projects/mess

  39. Saputra, J., Saragih, R., Handayani, D.: Robust \({H}_{\infty }\) controller for bilinear system to minimize HIV concentration in blood plasma. J. Phys. Conf. Ser. 1245, 012055 (2019). https://doi.org/10.1088/1742-6596/1245/1/012055

    Article  Google Scholar 

  40. Werner, S.W.R.: Structure-preserving model reduction for mechanical systems. Dissertation, Otto-von-Guericke-Universität, Magdeburg, Germany (2021). https://doi.org/10.25673/38617

  41. Werner, S.W.R.: Code, data and results for numerical experiments in “A unifying framework for tangential interpolation of structured bilinear control systems” (version 1.0) (2022). https://doi.org/10.5281/zenodo.5793356

  42. Zhang, L., Lam, J.: On \(H_{2}\) model reduction of bilinear systems. Autom. J. IFAC 38(2), 205–216 (2002). https://doi.org/10.1016/S0005-1098(01)00204-7

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Jens Saak for providing the data for the bilinear semi-discretized steel profile and inspiring discussions about the interpretation of tangential interpolation for linear systems.

Funding

Benner and Werner were supported by the German Research Foundation (DFG) Research Training Group 2297 “Mathematical Complexity Reduction (MathCoRe)”, Magdeburg. Gugercin was supported in parts by National Science Foundation under Grant No. DMS-1819110. Part of this material is based upon work supported by the National Science Foundation under Grant No. DMS-1439786 and by the Simons Foundation Grant No. 50736 while all authors were in residence at the Institute for Computational and Experimental Research in Mathematics in Providence, RI, during the “Model and dimension reduction in uncertain and dynamic systems” program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen W. R. Werner.

Ethics declarations

Conflict of interest

Parts of this work were carried out while Werner was at the Max Planck Institute for Dynamics of Complex Technical Systems in Magdeburg, Germany and at the Courant Institute of Mathematical Sciences, New York University, USA. The authors declare to have no competing interests related to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benner, P., Gugercin, S. & Werner, S.W.R. A unifying framework for tangential interpolation of structured bilinear control systems. Numer. Math. 155, 445–483 (2023). https://doi.org/10.1007/s00211-023-01380-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-023-01380-w

Mathematics Subject Classification

Navigation