Skip to main content
Log in

Thermality of horizon through near horizon instability: a path integral approach

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Recent investigations revealed that the near horizon Hamiltonian of a massless, chargeless outgoing particle, for its particular motion in static as well as stationary black holes, is effectively \(\sim xp\) kind. This is unstable by nature and has the potential to explain a few interesting physical phenomena. From the path integral kernel, we first calculate the density of states. Also, following the idea of Singh and Padmanabhan (Phys Rev D 85:025011, 2012. https://doi.org/10.1103/PhysRevD.85.025011. arXiv:1112.6279 [hep-th]) here, in the vicinity of the horizon, we calculate the effective path corresponding to its Schrodinger version of Hamiltonian through the path integral approach. The latter result appears to be complex in nature and carries the information of escaping the probability of the particle through the horizon. In both ways, we identify the correct expression of Hawking temperature. Moreover, here we successfully extend the complex path approach to a more general black hole like Kerr spacetime. We feel that such a complex path is an outcome of the nature of near horizon instability provided by the horizon and, therefore, once again bolstered the fact that the thermalization mechanism of the horizon may be explained through the aforesaid local instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No data was used or produced in this work.

Notes

  1. This form of potential, related to near horizon of a black hole spacetime, has also been obtained and studied in [44, 45] (see also [46]).

References

  1. Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973). https://doi.org/10.1103/PhysRevD.7.2333

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bekenstein, J.D.: Generalized second law of thermodynamics in black hole physics. Phys. Rev. D 9, 3292–3300 (1974). https://doi.org/10.1103/PhysRevD.9.3292

    Article  ADS  Google Scholar 

  3. Hawking, S.W.: Black hole explosions. Nature 248, 30–31 (1974). https://doi.org/10.1038/248030a0

    Article  ADS  MATH  Google Scholar 

  4. Hawking, S.W.: Particle Creation by Black Holes. Commun. Math. Phys. 43, 199–220 (1975). https://doi.org/10.1007/BF02345020. (erratum: Commun. Math. Phys. 46 (1976), 206)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Gibbons, G.W., Hawking, S.W.: Action integrals and partition functions in quantum gravity. Phys. Rev. D 15, 2752–2756 (1977). https://doi.org/10.1103/PhysRevD.15.2752

    Article  ADS  Google Scholar 

  6. Hawking, S.W.: Zeta function regularization of path integrals in curved space-time. Commun. Math. Phys. 55, 133 (1977). https://doi.org/10.1007/BF01626516

    Article  ADS  MATH  Google Scholar 

  7. Srinivasan, K., Padmanabhan, T.: Particle production and complex path analysis. Phys. Rev. D 60, 024007 (1999). https://doi.org/10.1103/PhysRevD.60.024007. arXiv:gr-qc/9812028 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  8. Parikh, M.K., Wilczek, F.: Hawking radiation as tunneling. Phys. Rev. Lett. 85, 5042–5045 (2000). https://doi.org/10.1103/PhysRevLett.85.5042. arXiv:hep-th/9907001 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Banerjee, R., Majhi, B.R.: Quantum tunneling beyond semiclassical approximation. JHEP 06, 095 (2008). https://doi.org/10.1088/1126-6708/2008/06/095. arXiv:0805.2220 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  10. Banerjee, R., Majhi, B.R.: Hawking black body spectrum from tunneling mechanism. Phys. Lett. B 675, 243–245 (2009). https://doi.org/10.1016/j.physletb.2009.04.005. arXiv:0903.0250 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  11. Robinson, S.P., Wilczek, F.: A relationship between Hawking radiation and gravitational anomalies. Phys. Rev. Lett. 95, 011303 (2005). https://doi.org/10.1103/PhysRevLett.95.011303. arXiv:gr-qc/0502074 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  12. Iso, S., Umetsu, H., Wilczek, F.: Hawking radiation from charged black holes via gauge and gravitational anomalies. Phys. Rev. Lett. 96, 151302 (2006). https://doi.org/10.1103/PhysRevLett.96.151302. arXiv:hep-th/0602146 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  13. Banerjee, R., Kulkarni, S.: Hawking radiation and covariant anomalies. Phys. Rev. D 77, 024018 (2008). https://doi.org/10.1103/PhysRevD.77.024018. arXiv:0707.2449 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  14. Banerjee, R., Majhi, B.R.: Connecting anomaly and tunneling methods for Hawking effect through chirality. Phys. Rev. D 79, 064024 (2009). https://doi.org/10.1103/PhysRevD.79.064024. arXiv:0812.0497 [hep-th]

    Article  ADS  Google Scholar 

  15. Sen, A.: Black hole entropy function and the attractor mechanism in higher derivative gravity. JHEP 09, 038 (2005). https://doi.org/10.1088/1126-6708/2005/09/038. arXiv:hep-th/0506177 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  16. Sen, A.: Black hole entropy function, attractors and precision counting of microstates. Gen. Relativ. Gravit. 40, 2249–2431 (2008). https://doi.org/10.1007/s10714-008-0626-4. arXiv:0708.1270 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Majhi, B.R.: Entropy function from the gravitational surface action for an extremal near horizon black hole. Eur. Phys. J. C 75(11), 521 (2015). https://doi.org/10.1140/epjc/s10052-015-3744-7. arXiv:1503.08973 [gr-qc]

    Article  ADS  Google Scholar 

  18. Wald, R.M.: Black hole entropy is the Noether charge. Phys. Rev. D 48(8), R3427–R3431 (1993). https://doi.org/10.1103/PhysRevD.48.R3427. arXiv:gr-qc/9307038 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Iyer, V., Wald, R.M.: A Comparison of Noether charge and Euclidean methods for computing the entropy of stationary black holes. Phys. Rev. D 52, 4430–4439 (1995). https://doi.org/10.1103/PhysRevD.52.4430. arXiv:gr-qc/9503052 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  20. Brown, J.D., Henneaux, M.: Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity. Commun. Math. Phys. 104, 207–226 (1986). https://doi.org/10.1007/BF01211590

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Strominger, A., Vafa, C.: Microscopic origin of the Bekenstein–Hawking entropy. Phys. Lett. B 379, 99–104 (1996). https://doi.org/10.1016/0370-2693(96)00345-0. arXiv:hep-th/9601029 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Strominger, A.: Black hole entropy from near horizon microstates. JHEP 02, 009 (1998). https://doi.org/10.1088/1126-6708/1998/02/009. arXiv:hep-th/9712251 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Carlip, S.: Black hole entropy from conformal field theory in any dimension. Phys. Rev. Lett. 82, 2828–2831 (1999). https://doi.org/10.1103/PhysRevLett.82.2828. arXiv:hep-th/9812013 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Majhi, B.R., Padmanabhan, T.: Noether current, horizon Virasoro algebra and entropy. Phys. Rev. D 85, 084040 (2012). https://doi.org/10.1103/PhysRevD.85.084040. arXiv:1111.1809 [gr-qc]

    Article  ADS  Google Scholar 

  25. Majhi, B.R., Padmanabhan, T.: Noether current from the surface term of gravitational action, Virasoro algebra and horizon entropy. Phys. Rev. D 86, 101501 (2012). https://doi.org/10.1103/PhysRevD.86.101501. arXiv:1204.1422 [gr-qc]

    Article  ADS  Google Scholar 

  26. Das, A.: Field Theory: A Path Integral Approach. World Scientific, Singapore (1993)

    Book  Google Scholar 

  27. Singh, S., Padmanabhan, T.: Complex effective path: a semi-classical probe of quantum effects. Phys. Rev. D 85, 025011 (2012). https://doi.org/10.1103/PhysRevD.85.025011. arXiv:1112.6279 [hep-th]

    Article  ADS  Google Scholar 

  28. Padmanabhan, T.: Quantum Field Theory: The Why, What and How. Springer, Cham (2016)

    Book  MATH  Google Scholar 

  29. Brown, M.R.: Quantum Gravity at Small Distances in ‘Quantum Theory of Gravity’s, ed. M. S. Christensen. Adam Hilger Ltd. (1994)

  30. Singh, S.: Private communication

  31. Dalui, S., Majhi, B.R.: Near horizon local instability and quantum thermality. Phys. Rev. D 102(12), 124047 (2020). https://doi.org/10.1103/PhysRevD.102.124047. arXiv:2007.14312 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  32. Dalui, S., Majhi, B.R.: Horizon thermalization of Kerr black hole through local instability. Phys. Lett. B 826, 136899 (2022). https://doi.org/10.1016/j.physletb.2022.136899. arXiv:2103.11613 [gr-qc]

    Article  MathSciNet  MATH  Google Scholar 

  33. Dalui, S., Majhi, B.R., Mishra, P.: Presence of horizon makes particle motion chaotic. Phys. Lett. B 788, 486–493 (2019). https://doi.org/10.1016/j.physletb.2018.11.050. arXiv:1803.06527 [gr-qc]

    Article  ADS  Google Scholar 

  34. Dalui, S., Majhi, B.R., Mishra, P.: Induction of chaotic fluctuations in particle dynamics in a uniformly accelerated frame. Int. J. Mod. Phys. A 35(18), 2050081 (2020). https://doi.org/10.1142/S0217751X20500815. arXiv:1904.11760 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  35. Dalui, S., Majhi, B.R., Mishra, P.: Horizon induces instability locally and creates quantum thermality. Phys. Rev. D 102(4), 044006 (2020). https://doi.org/10.1103/PhysRevD.102.044006. arXiv:1910.07989 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  36. Dalui, S., Majhi, B.R., Padmanabhan, T.: Thermal nature of a generic null surface. Phys. Rev. D 104(12), 124080 (2021). https://doi.org/10.1103/PhysRevD.104.124080. arXiv:2110.12665 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  37. Majhi, B.R.: Is instability near a black hole key for “thermalization’’ of its horizon? Gen. Relativ. Gravit. 54(8), 90 (2022). https://doi.org/10.1007/s10714-022-02975-8. [arXiv:2101.04458 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Stockmann, H.J.: Quantum Chaos, An Introduction, 1st edn. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  39. Gutzwiller, M.C.: Chaos in Classical and Quantum Mechanics, 1st edn. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  40. Kubo, R.: The fluctuation–dissipation theorem. Rep. Prog. Phys. 29, 255 (1966). https://doi.org/10.1088/0034-4885/29/1/306

    Article  ADS  MATH  Google Scholar 

  41. Page, D.N.: Particle emission rates from a black hole: massless particles from an uncharged, nonrotating hole. Phys. Rev. D 13, 198–206 (1976)

    Article  ADS  Google Scholar 

  42. Page, D.N.: Particle emission rates from a black hole. II. Massless particles from a rotating hole. Phys. Rev. D 14, 3260–3273 (1976)

    Article  ADS  Google Scholar 

  43. Page, D.N.: Particle emission rates from a black hole. 3. Charged leptons from a nonrotating hole. Phys. Rev. D 16, 2402–2411 (1977)

    Article  ADS  Google Scholar 

  44. Camblong, H.E., Chakraborty, A., Ordonez, C.R.: Near-horizon aspects of acceleration radiation by free fall of an atom into a black hole. Phys. Rev. D 102(8), 085010 (2020). https://doi.org/10.1103/PhysRevD.102.085010. [arXiv:2009.06580 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  45. Azizi, A., Camblong, H.E., Chakraborty, A., Ordonez, C.R., Scully, M.O.: Acceleration radiation of an atom freely falling into a Kerr black hole and near-horizon conformal quantum mechanics. Phys. Rev. D 104(6), 065006 (2021). https://doi.org/10.1103/PhysRevD.104.065006. arXiv:2011.08368 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  46. Camblong, H.E., Chakraborty, A., Lopez-Duque, P., Ordóñez, C.R.: Spectral Properties of the Symmetry Generators of Conformal Quantum Mechanics: A Path-Integral Approach. arXiv:2210.02370 [quant-ph]

  47. Konstantogiannis, S.: An Introduction to Complex Potentials in Quantum Mechanics.https://doi.org/10.13140/RG.2.2.33585.89447

  48. Mainardi, F.: Appendix B. Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010). https://doi.org/10.1142/p614

    Book  MATH  Google Scholar 

  49. Jeffrey, Alan, Zwillinger, Daniel, Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products, 7th edn. Academic Press, London (2007). https://doi.org/10.1016/B978-0-08-047111-2.50015-7

    Book  Google Scholar 

Download references

Acknowledgements

GRK would like to express his gratitude to the Dept. of Physics at the Indian Institute of Technology, Guwahati, India, for giving the opportunity to do this research project and for supporting undergraduate research. Final part of the work was done when GRK was at Mathematical Institute, Oxford. The authors thank Suprit Singh for the extensive discussion and valuable comments.

Funding

There is no funding for this work to mention.

Author information

Authors and Affiliations

Authors

Contributions

Both the authors equally contributed right from the calculations and interpreting the results.

Corresponding author

Correspondence to Bibhas Ranjan Majhi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval:

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

Appendix A: Alternative approach to DOS

In order to evaluate (9) we first transform Hamiltonian (7) to that of an inverted harmonic oscillator (IHO)(\(H=(\kappa /2)(P^2-X^2)\)) by going into a new canonical variable

$$\begin{aligned} x=\frac{1}{\sqrt{2}}(P-X); \,\,\,\ p = \frac{1}{\sqrt{2}}(P+X). \end{aligned}$$
(A1)

The propagator of the IHO can be obtained from that of harmonic oscillator by replacing frequency \(\omega \rightarrow i\omega \). For (A1) frequency is identified as \(\omega =\kappa \) and hence the propagator in this case comes out to be

$$\begin{aligned} K(x_2=X,t_2=t; x_1=X,t_1=0) = \Big (\frac{i}{-2\pi \sinh (\kappa t)}\Big )^{1/2}\exp \Big [ibX^2\Big ], \end{aligned}$$
(A2)

where \(b=\frac{1}{\sinh (\kappa t)}\{\cosh (\kappa t) - 1\}\) (to find (A2) substitute \(\omega = \kappa \rightarrow i\omega = i\kappa \) and \(m=1/\kappa \) as well as \(x_f=x_2=x_i=x_1=X, t_i=t_1=0, t_f=T=t_2=t\) in Eq. 3.81 combined with Eq. 3.66 of [26]). Then we have

$$\begin{aligned} \int _{-\infty }^\infty dX~G(X,E)= & {} \int _0^\infty dt e^{-\frac{i E t}{\hbar }} \int _0^\infty dx~K(x_2=X,t_2=t; x_1=X,t_1=0)\nonumber \\= & {} \int _0^\infty dt~ \frac{e^{-\frac{i E t}{\hbar }}}{2\sinh (\frac{\kappa t}{2})}. \end{aligned}$$
(A3)

In the above the X integration has been done by replacing \(b\rightarrow b+i\epsilon \) for \(\epsilon >0\) and at the end \(\epsilon \rightarrow 0\) has been taken.

The final t integration can be done by replacing \(t\rightarrow t-i\delta \) with \(\delta >0\) and then choosing the contour in the fourth quadrant in complex t plane. This will yield (13). The explicit steps are as follows. First change the integration variable as \(t\rightarrow 2t/\kappa \). This yields

$$\begin{aligned} \dfrac{1}{2}\int _{0}^{\infty }~dt~\dfrac{e^{-\frac{iEt}{\hbar }}}{\sinh (\frac{\kappa t}{2})}=\dfrac{1}{\kappa }\int _{0}^{\infty }~dt~\dfrac{e^{-i\frac{2 E}{\hbar \kappa }t}}{\sinh (t)}. \end{aligned}$$
(A4)
Fig. 1
figure 1

Contour plot for integration. The integration is done considering t as a complex variable. The integration in the range \([0,\infty )\) is infinitesimally shifted from the real axis for the integral to be convergent

The integration is done using a suitable contour, as shown in Fig. 1. The motivation for choosing the contour can be found in [28]. There are no poles inside the contour and hence, the total integral over the closed contour vanishes. However, the integration over the small semi-circles is non-zero. Hence, our required integral is negative of the sum of these integrals over the semi-circle:

$$\begin{aligned} \int _{{\mathcal {C}}}dt~f(t)+\int _{{\mathcal {C}}'}dt~ f(t)+\sum _{n=1}\int _{{\mathcal {C}}_{n}}dt ~f(t)+\int _{{\mathcal {D}}}dt~f(t)=0;~~f(t)=\dfrac{e^{-i\frac{2Et}{\kappa \hbar }}}{\sinh (t)}.\nonumber \\ \end{aligned}$$
(A5)

In the above \({\mathcal {D}}\) is the path on the imaginary axis between to consecutive poles. If we look at the integration over a portion of the contour along the imaginary axis, it looks as follows

$$\begin{aligned} \int _{-i\pi +i\epsilon }^{0}\dfrac{e^{-i\frac{2Et}{\hbar \kappa }}}{\sinh (t)} dt=\int _{\pi -\epsilon }^{0}\dfrac{e^{-\frac{2Et}{\hbar \kappa }}}{\sin (t)} dt \end{aligned}$$

This is a Real quantity. Hence, the integration over \({\mathcal {D}}\) is real, and won’t contribute to the imaginary part. In this, the integral on the circular part, i.e, on the contour \({\mathcal {C}}'\) goes to zero as we take the limit of radius going to infinity as there is \(\sinh (t)\) term in the denominator. We are interested in the imaginary part of the integration. This comes from the contribution made by integration over the infinitesimal semi-circles drawn over the poles. Using the Residue theorem, the integration on small semi-circular deformations will give us,

$$\begin{aligned} \int _{{\mathcal {C}}_{n}}dt~f(t)=-\pi i\text {Res}(f(t_{n}));~~~t_{n}=-in\pi ,~~n\in \mathbb {N}. \end{aligned}$$
(A6)

The negative sign is due to the direction in which the contour is traversed along. Note that \(n=0\) is not included as for this we will have \(t_0 = i\delta \) which is outside our chosen contour. Hence, we have

$$\begin{aligned} \Im \left( \int _{0}^{\infty }~dt~\dfrac{e^{-i\frac{2 E}{\hbar \kappa }t}}{\sinh (t)}\right) =\pi \sum _{n=1}^{\infty }\text {Res}(f(t_{n})). \end{aligned}$$
(A7)

The Residue at the poles are given as follows

$$\begin{aligned} \text {Res}(f(t_{n}))=(-1)^{n}e^{-\frac{2En\pi }{\hbar \kappa }};~~t_{n}=-in\pi . \end{aligned}$$
(A8)

Hence, we have,

$$\begin{aligned} \Im \left( \dfrac{1}{2}\int _{0}^{\infty }~dt~\dfrac{e^{-\frac{iEt}{\hbar }}}{\sinh (\frac{\omega t}{2})}\right) =\dfrac{\pi }{\omega }\sum _{n=1}^{\infty }\big (-e^{-\frac{2E\pi }{\hbar \kappa }}\big )^{n}=-\dfrac{\pi }{\kappa }\dfrac{e^{-\frac{2\pi E}{\hbar \kappa }}}{1+e^{-\frac{2E\pi }{\hbar \kappa }}}=-\dfrac{\pi }{\kappa }\dfrac{1}{e^{\frac{2E\pi }{\hbar \kappa }}+1}\nonumber \\ \end{aligned}$$
(A9)

and therefore DOS is given by (14).

Appendix B: Alternative way to effective potential

The solution of (25) provides the energy eigenfunction. This is given by

$$\begin{aligned} \psi _E(x)=C_0x^{\frac{iE}{\hbar \kappa }-\frac{1}{2}}, \end{aligned}$$
(B1)

where \(C_0\) is the normalization constant. \(C_0\) is determined through the nomalization condition \(\int dx \psi _E'^*(x)\psi _E(x) = \delta (E-E')\) which yields \(C_0=1/\sqrt{2\pi \hbar \kappa }\).

Now we ask the following question: What is the effective potential under which a massive particle with mass m will have energy eigen wavefunction, given by Eq. (B1), through the standard form of time-independent Schrodinger equation? In order to identify the effective potential, we have to substitute this wavefunction in the Schrodinger equation for a massive particle given by (27). Substitution of (B1) in (27) yields the form of potential as

$$\begin{aligned} V(x)={\mathcal {E}}+\dfrac{\hbar ^{2}}{8mx^{2}}\Big (3-\dfrac{8iE}{\hbar \kappa }-\dfrac{4E^{2}}{\hbar ^{2}\kappa ^{2}}\Big ). \end{aligned}$$
(B2)

This is the same as Eq. (28) for a zero energy \(({\mathcal {E}})=0\) massive particle.

Just for the shake of completeness we provide a systematic steps to obtain the solution directly from the Schrodinger equation with the potential given by (28). Then the Hamiltonian of the system with a massive non-relativistic particle is given by,

$$\begin{aligned} H=\dfrac{p^{2}}{2m}-\dfrac{k}{x^{2}};~~~k=\dfrac{\hbar ^{2}}{8m}\left( \dfrac{8iE}{\hbar \kappa }-3+\dfrac{4E^{2}}{\hbar ^{2}\kappa ^{2}}\right) . \end{aligned}$$
(B3)

As the potential is time-independent, we can write \(H{\left| {\psi }\right\rangle }={\mathcal {E}}{\left| {\psi }\right\rangle }\). Hence the Schrodinger equation is given by

$$\begin{aligned} -\dfrac{\hbar ^{2}}{2m}\dfrac{d^{2}\psi }{dx^{2}}-\dfrac{k}{x^{2}}={\mathcal {E}}\psi . \end{aligned}$$
(B4)

On rearranging the equation, we get,

$$\begin{aligned} x^{2}\psi ''+\psi \left[ \dfrac{2mk}{\hbar ^{2}}+\dfrac{2m{\mathcal {E}}}{\hbar ^{2}}x^{2}\right] =0. \end{aligned}$$
(B5)

Let us simplify the equation by expressing the wavefunction as \(\psi (x)=C x^{1/2}f(x)\), where C is a constant and f(x) is a function to be determined. Substituting this in the (B5) one finds

$$\begin{aligned} x^{2}f''+xf'+f\left[ -\dfrac{1}{4}+\dfrac{2mk}{\hbar ^{2}}+\dfrac{2m{\mathcal {E}}}{\hbar ^{2}}x^{2}\right] =0. \end{aligned}$$
(B6)

Changing the variable \(\sqrt{\dfrac{2m{\mathcal {E}}}{\hbar ^{2}}}x=y\), and then substituting the value of k, we obtain

$$\begin{aligned} y^{2}\ddot{f}+y{\dot{f}}+f\left[ y^{2}-\left( 1-\dfrac{iE}{\hbar \kappa }\right) ^{2}\right] =0. \end{aligned}$$
(B7)

This is the standard Bessel equation and hence the general solution is given by

$$\begin{aligned} \psi (x)=C x^{1/2}\left( AJ_{\nu }\left( \sqrt{\dfrac{2m{\mathcal {E}}}{\hbar ^{2}}}x\right) +BY_{\nu }\left( \sqrt{\dfrac{2m{\mathcal {E}}}{\hbar ^{2}}}x\right) \right) . \end{aligned}$$
(B8)

In the above we denoted \(\nu =1-\dfrac{iE}{\hbar \kappa }\) and AB are integration constants. We now proceed to study this solution under two limiting cases.

1.1 1. Limiting Conditions

  1. (1)

    In the first limiting condition, we make the energy of the massive particle to be 0 i.e., \({\mathcal {E}}\rightarrow 0\). In this case, we know that the function must look like \(x^{-1/2+\frac{iE}{\hbar \kappa }}\) (see Eq. (B1)). The Limiting nature of the Bessel functions when \(\vert z\vert \rightarrow 0\) are [48],

    $$\begin{aligned}{} & {} J_{\nu }(z)\approx \dfrac{1}{\Gamma (\nu +1)}\Big (\dfrac{z}{2}\Big )^{\nu }~;\nonumber \\{} & {} Y_{\nu }(z)\approx -\dfrac{\Gamma (\nu )}{\pi }\Big (\dfrac{z}{2}\Big )^{-\nu }. \end{aligned}$$
    (B9)

    Then under the limit \({\mathcal {E}}\rightarrow 0\), (B8) yields

    $$\begin{aligned} \psi (x)\approx C x^{1/2}\left[ \dfrac{A}{\Gamma (\nu +1)}\left( \sqrt{\dfrac{m{\mathcal {E}}}{2\hbar ^{2}}}x\right) ^{1-\frac{iE}{\hbar \kappa }}-\dfrac{B\Gamma \big (1-\frac{iE}{\hbar \kappa }\big )}{\pi }\left( \sqrt{\dfrac{m{\mathcal {E}}}{2\hbar ^{2}}}x\right) ^{-1+\frac{iE}{\hbar \kappa }}\right] .\nonumber \\ \end{aligned}$$
    (B10)

    Note that the first term decays quickly as \({\mathcal {E}}\rightarrow 0\) and therefore will not contribute to this limiting case. Hence we have

    $$\begin{aligned} \psi (x)\approx - C \dfrac{B\Gamma \big (1-\frac{iE}{\hbar \kappa }\big )}{\pi }\left( \sqrt{\dfrac{m{\mathcal {E}}}{2\hbar ^{2}}}\right) ^{-1+\frac{iE}{\hbar \kappa }}x^{-\frac{1}{2}+\frac{iE}{\hbar \kappa }}. \end{aligned}$$
    (B11)

    Now in order to obtain the required form for \({\mathcal {E}}=0\) set \(B=\Big (\sqrt{\dfrac{m{\mathcal {E}}}{2\hbar ^{2}}}\Big )^{1-\frac{iE}{\hbar \kappa }}\) and then one obtains

    $$\begin{aligned} \psi (x)\approx -C \dfrac{\Gamma \big (1-\frac{iE}{\hbar \kappa }\big )}{\pi }x^{-\frac{1}{2}+\frac{iE}{\hbar \kappa }}. \end{aligned}$$
    (B12)

    Finally use of normalization condition will yield (B1).

  2. (2)

    Even though the investigation is done near the horizon, where we find the effective model having the form given by Eq. (23), we can look at the inverse-squared potential as a separate system and study the asymptotic limits, i.e. \(x\rightarrow \infty \), or in other words, far away from the potential source. In this case, the particle should behave similarly to a free particle. The asymptotic values of the Bessel functions are [48]:

    $$\begin{aligned} \begin{aligned} J_{\nu }(z)\approx \sqrt{\dfrac{2}{\pi z}}\cos \Big (z-\nu \dfrac{\pi }{2}-\dfrac{\pi }{4}\Big )~;\\ Y_{\nu }(z)\approx \sqrt{\dfrac{2}{\pi z}}\sin \Big (z-\nu \dfrac{\pi }{2}-\dfrac{\pi }{4}\Big ). \end{aligned} \end{aligned}$$
    (B13)

    Then (B8) reduces to

    $$\begin{aligned}{} & {} \psi (x)\approx C\left( \dfrac{2\hbar ^{2}}{m\pi ^{2}{\mathcal {E}}}\right) ^{1/4}\left[ A\cos \left( \sqrt{\dfrac{2m{\mathcal {E}}}{\hbar ^{2}}}x-\dfrac{3\pi }{4}+\dfrac{i\pi E}{2\hbar \kappa }\right) \right. \nonumber \\{} & {} \left. \quad +B\sin \left( \sqrt{\dfrac{2m{\mathcal {E}}}{\hbar ^{2}}}x-\dfrac{3\pi }{4}+\dfrac{i\pi E}{2\hbar \kappa }\right) \right] . \end{aligned}$$
    (B14)

    This can be expanded as,

    $$\begin{aligned} \psi (x){} & {} \approx C\Big (\dfrac{2\hbar ^{2}}{m\pi ^{2}{\mathcal {E}}}\Big )^{1/4} \Big [A\dfrac{e^{-\frac{\pi E}{2\hbar \kappa }}e^{i(\sqrt{\frac{2m{\mathcal {E}}}{\hbar ^{2}}}x-\frac{3\pi }{4})}+e^{\frac{\pi E}{2\hbar \kappa }}e^{-i(\sqrt{\frac{2m{\mathcal {E}}}{\hbar ^{2}}}x-\frac{3\pi }{4})}}{2}\nonumber \\{} & {} \qquad +B\dfrac{e^{-\frac{\pi E}{2\hbar \kappa }}e^{i(\sqrt{\frac{2m{\mathcal {E}}}{\hbar ^{2}}}x-\frac{3\pi }{4})}-e^{\frac{\pi E}{2\hbar \kappa }}e^{-i(\sqrt{\frac{2m{\mathcal {E}}}{\hbar ^{2}}}x-\frac{3\pi }{4})}}{2i}\Big ]. \end{aligned}$$
    (B15)

    So both ingoing and outgoing free solutions are present.

Appendix C: Evaluating the ratios \((I_{1}+I_{2})/D,~I_{3}/D\)

Before starting the calculations, we mention the integral identity used to simplify the equations [49].

$$\begin{aligned} \begin{aligned}&\int _{0}^{\infty } dx~x^{\lambda +1}e^{-\alpha x^{2}}J_{\mu }(\beta x)J_{\nu }(\gamma x)=\dfrac{\beta ^{\mu }\gamma ^{\nu }\alpha ^{-(\mu +nu+\lambda +2)/2}}{2^{\mu +nu+1}\Gamma (\nu +1)}\\&\quad \sum _{m=0}^{\infty }\Big [\dfrac{\Gamma (m+\frac{1}{2}(\nu +\mu +\lambda +2))}{m!\Gamma (m+\mu +1)} \Big (\dfrac{-\beta ^{2}}{4\alpha }\Big )^{m}\\&\quad \times F(-m,-\mu -m;\nu +1;\dfrac{\gamma ^{2}}{\beta ^{2}})\Big ]. \end{aligned} \end{aligned}$$
(C1)

The condition on \(\mu ,\nu ,\lambda \) is \(\text {Re}(\mu +\nu +\lambda )>-2\). In the present case we identify \(\mu =\nu =ia=1-ia_{0},~a_{0}=E/\hbar \kappa \) and \(\lambda =1\). Hence the above mentioned condition is satisfied. We now evaluate our integrals.

1.1 1. Calculation of \((I_{1}+I_{2})/D\)

We start our calculations with evaluating the term \(I_{1}\) (see Eq. (38)). The integration of this expression to be evaluated is as follows:

$$\begin{aligned}{} & {} \int _{-\infty }^{\infty }dx~x^{2}e^{i\lambda x^{2}} J_{ia}(px)J_{ia}(qx)=\int _{-\infty }^{0}dx~x^{2}e^{i\lambda x^{2}} J_{ia}(px)J_{ia}(qx)\nonumber \\{} & {} \qquad +\int _{0}^{\infty }dx~x^{2}e^{i\lambda x^{2}} J_{ia}(px)J_{ia}(qx)\nonumber \\{} & {} \quad = \int _{0}^{\infty }dx~x^{2}e^{i\lambda x^{2}} J_{ia}(-px)J_{ia}(-qx)+\int _{0}^{\infty }dx~x^{2}e^{i\lambda x^{2}} J_{ia}(px)J_{ia}(qx)\nonumber \\{} & {} \quad = e^{2\pi a}\int _{0}^{\infty }dx~x^{2}e^{i\lambda x^{2}} J_{ia}(px)J_{ia}(qx)+\int _{0}^{\infty }dx~x^{2}e^{i\lambda x^{2}} J_{ia}(px)J_{ia}(qx)\nonumber \\{} & {} \quad = (1+e^{2\pi a})\underbrace{\int _{0}^{\infty }dx~x^{2}e^{i\lambda x^{2}} J_{ia}(px)J_{ia}(qx)}_Y. \end{aligned}$$
(C2)

Using the identity Eq. (C1) we find

$$\begin{aligned} \begin{aligned} Y&= \int _{0}^{\infty }dx~x^{2}e^{i\lambda x^{2}} J_{ia}(px)J_{ia}(qx)\\&=\dfrac{p^{ia}q^{ia}(-i\lambda )^{-ia-3/2}}{2^{2ia+1}\Gamma (ia+1)} \sum _{m=0}^{\infty }\Bigg [\dfrac{\Gamma (m+ia+3/2)}{m!\Gamma (m+ia+1)}\Bigg (\dfrac{-p^{2}}{4i\lambda }\Bigg )^{m}\\&\quad \times F(-m,-ia-m;ia+1;\dfrac{q^{2}}{p^{2}})\Bigg ]. \end{aligned} \end{aligned}$$
(C3)

Next substituting the values of \(p,q,\lambda \) from Eq. (32) in the above we obtain

$$\begin{aligned} \begin{aligned} Y&=\Bigg (\dfrac{2m\epsilon ^{2}}{i\hbar (t_{2}-t_{1})}\Bigg )^{ia}\dfrac{(-i\lambda )^{-3/2}}{2^{2ia+1} \Gamma (ia+1)}\sum _{m=0}^{\infty }\Bigg [\dfrac{\Gamma (m+ia+3/2)}{m!\Gamma (m+ia+1)}\Bigg (\dfrac{-m\epsilon ^{2}(t_{2}-t)}{2\hbar i(t_{2}-t_{1})(t-t_{1})}\Bigg )^{m}\\&\quad \times F\Bigg (-m,-ia-m;ia+1;\Bigg (\dfrac{t-t_{1}}{t_{2}-t}\Bigg )^{2}\Bigg )\Bigg ]. \end{aligned} \end{aligned}$$
(C4)

In the limit \(\epsilon \rightarrow 0\), only \(m=0\) term survives and then one obtains

$$\begin{aligned} Y= & {} \Bigg (\dfrac{2m\epsilon ^{2}}{i\hbar (t_{2}-t_{1})}\Bigg )^{ia}\dfrac{(-i\lambda )^{-3/2}}{2^{2ia+1}\Gamma (ia+1)}\dfrac{\Gamma (ia+3/2)}{\Gamma (ia+1)}\nonumber \\{} & {} \quad \times F\Bigg (0,-ia;ia+1;\Bigg (\dfrac{t-t_{1}}{t_{2}-t}\Bigg )^{2}\Bigg ). \end{aligned}$$
(C5)

Later, we take the limit \(t_{2}\rightarrow \infty \) in which case, the Hypergeometric function becomes \(F(0,-ia;ia+1;0)=1\). Hence we find

$$\begin{aligned} I_{1}=\dfrac{e^{-2\pi a}(1+e^{2\pi a})}{\sinh ^{2}(\pi a)}\Bigg (\dfrac{2m\epsilon ^{2}}{i\hbar (t_{2}-t_{1})}\Bigg )^{ia}\dfrac{(-i\lambda )^{-3/2}}{2^{2ia+1}\Gamma (ia+1)}\dfrac{\Gamma (ia+3/2)}{\Gamma (ia+1)}. \end{aligned}$$
(C6)

Finally using the property \(\Gamma (1-z)\Gamma (z)=\dfrac{\pi }{\sin \pi z}\) one finds

$$\begin{aligned} I_{1}=e^{\pi a/2}(1+e^{-2\pi a})\Bigg (\dfrac{m\epsilon ^{2}}{2\hbar (t_{2}-t_{1})}\Bigg )^{ia}(-i\lambda )^{-3/2}\dfrac{[\Gamma (-ia)]^{2}\Gamma (ia+3/2)}{2\pi ^{2}}. \end{aligned}$$
(C7)

In the integral \(I_{2}\), there is \(J_{-ia}\) instead of \(J_{ia}\) (see Eq. (39)). Hence, we can replace \(a\rightarrow -a\) and get \(I_{2}\)

$$\begin{aligned} I_{2}= & {} e^{-2\pi a}\times I_{1}(a\rightarrow -a)=e^{-\pi a/2}(1+e^{-2\pi a})\nonumber \\{} & {} \quad \Bigg (\dfrac{m\epsilon ^{2}}{2\hbar (t_{2}-t_{1})}\Bigg )^{-ia}(-i\lambda )^{-3/2} \dfrac{[\Gamma (ia)]^{2}\Gamma (-ia+3/2)}{2\pi ^{2}}. \end{aligned}$$
(C8)

Till this point, the calculations are in agreement with the calculations done in [27]. As mentioned earlier, we have,

$$\begin{aligned} a=-a_{0}-i;~~a_{0}=\dfrac{E}{\hbar \kappa }. \end{aligned}$$
(C9)

Then for our case

$$\begin{aligned} \begin{aligned} I_{1}&= ie^{-\pi a_{0}/2}(1+e^{2\pi a_{0}})\dfrac{(-i\lambda )^{-3/2}}{2\pi ^{2}}\exp \Bigg [\ln \Bigg (\dfrac{m\epsilon ^{2}}{2\hbar (t_{2}-t_{1})}\Bigg )\\&\quad -ia_{0}\ln \Bigg (\dfrac{m\epsilon ^{2}}{2\hbar (t_{2}-t_{1})}\Bigg )+i(2\theta _{1}+\theta _{2})\Bigg ]\\&\quad \times \vert \Gamma (-1+ia_{0})\vert ^{2}\vert \Gamma (5/2-ia_{0})\vert \end{aligned} \end{aligned}$$
(C10)

where,

$$\begin{aligned} \theta _{1}=\arg (\Gamma (-1+ia_{0}));~~\theta _{2}=\arg (\Gamma (5/2-ia_{0})) \end{aligned}$$
(C11)

and,

$$\begin{aligned}{} & {} \vert \Gamma (5/2-ia_{0})\vert =\Bigg \vert \dfrac{3}{2}-ia_{0}\Bigg \vert \Bigg \vert \dfrac{1}{2}-ia_{0}\nonumber \\{} & {} \Bigg \vert \vert \Gamma (1/2-ia_{0})\vert =\Bigg \vert \dfrac{3}{2}-ia_{0}\Bigg \vert \Bigg \vert \dfrac{1}{2}-ia_{0}\Bigg \vert \sqrt{\dfrac{\pi }{\cosh (\pi a_{0})}}~;\nonumber \\{} & {} \vert \Gamma (-1+ia_{0})\vert ^{2}=\dfrac{\pi }{a_{0}\sinh (\pi a_{0})}\dfrac{1}{1+a_{0}^{2}}. \end{aligned}$$
(C12)

Hence, using the above identities, we express \(I_{1}\) as follows,

$$\begin{aligned} \begin{aligned} I_{1}&= ie^{-\pi a_{0}/2}(1+e^{2\pi a_{0}})\dfrac{(-i\lambda )^{-3/2}}{2\pi ^{2}}\exp \Bigg [\ln \Bigg (\dfrac{m\epsilon ^{2}}{2\hbar (t_{2}-t_{1})}\Bigg )\\&\quad -ia_{0}\ln \Bigg (\dfrac{m\epsilon ^{2}}{2\hbar (t_{2}-t_{1})}\Bigg )+i(2\theta _{1}+\theta _{2})\Bigg ]\\&\quad \times \Bigg \vert \dfrac{3}{2}-ia_{0}\Bigg \vert \Bigg \vert \dfrac{1}{2}-ia_{0}\Bigg \vert \sqrt{\dfrac{\pi }{\cosh (\pi a_{0})}}\times \dfrac{\pi }{a_{0}\sinh (\pi a_{0})}\dfrac{1}{1+a_{0}^{2}}. \end{aligned} \end{aligned}$$
(C13)

Similarly, we can now express \(I_{2}\) as

$$\begin{aligned} I_{2}{} & {} =-ie^{\pi a_{0}/2}(1+e^{2\pi a_{0}})\dfrac{(-i\lambda )^{-3/2}}{2\pi ^{2}}\exp \Bigg [-\ln \Bigg (\dfrac{m\epsilon ^{2}}{2\hbar (t_{2}-t_{1})}\Bigg )\nonumber \\{} & {} \quad +ia_{0}\ln \Bigg (\dfrac{m\epsilon ^{2}}{2\hbar (t_{2}-t_{1})}\Bigg )+i(2\theta _{3}+\theta _{4})\Bigg ]\nonumber \\{} & {} \quad \times \vert \Gamma (1-ia_{0})\vert ^{2}\vert \Gamma (1/2+ia_{0})\vert , \end{aligned}$$
(C14)

where

$$\begin{aligned} \theta _{3}=\arg (\Gamma (1-ia_{0}));~~\theta _{4}=\arg (\Gamma (1/2+ia_{0}) \end{aligned}$$
(C15)

and,

$$\begin{aligned} \vert \Gamma (1/2+ia_{0})\vert =\sqrt{\dfrac{\pi }{\cosh (\pi a_{0})}}~; \,\,\,\ \vert \Gamma (1-ia_{0})\vert ^{2}=\dfrac{a_{0}\pi }{\sinh (\pi a_{0})}. \end{aligned}$$
(C16)

Hence we have

$$\begin{aligned} I_{2}{} & {} =-ie^{\pi a_{0}/2}(1+e^{2\pi a_{0}})\dfrac{(-i\lambda )^{-3/2}}{2\pi ^{2}}\exp \Bigg [-\ln \Bigg (\dfrac{m\epsilon ^{2}}{2\hbar (t_{2}-t_{1})}\Bigg )\nonumber \\{} & {} \quad +ia_{0}\ln \Bigg (\dfrac{m\epsilon ^{2}}{2\hbar (t_{2}-t_{1})}\Bigg )+i(2\theta _{3}+\theta _{4})\Bigg ]\nonumber \\{} & {} \quad \times \sqrt{\dfrac{\pi }{\cosh (\pi a_{0})}}\dfrac{a_{0}\pi }{\sinh (\pi a_{0})}. \end{aligned}$$
(C17)

Now that we have derived the expressions for \(I_{1},I_{2}\), we add them:

$$\begin{aligned} I_{1}+I_{2}{} & {} =-ie^{\pi a_{0}/2}(1+e^{2\pi a_{0}})\dfrac{(-i\lambda )^{-3/2}}{2\pi ^{2}}\exp \Bigg [-\ln \Bigg (\dfrac{m\epsilon ^{2}}{2\hbar (t_{2}-t_{1})}\Bigg )\nonumber \\{} & {} \quad +ia_{0}\ln \Bigg (\dfrac{m\epsilon ^{2}}{2\hbar (t_{2}-t_{1})}\Bigg )+i(2\theta _{3}+\theta _{4})\Bigg ]\nonumber \\{} & {} \quad \times \sqrt{\dfrac{\pi }{\cosh (\pi a_{0})}}\dfrac{a_{0}\pi }{\sinh (\pi a_{0})}\Bigg \{-1+e^{-\pi a_{0}} \exp \Bigg [2\ln \Bigg (\dfrac{m\epsilon ^{2}}{2\hbar (t_{2}-t_{1})}\Bigg )\nonumber \\{} & {} \quad -2ia_{0}\ln \Bigg (\dfrac{m\epsilon ^{2}}{2\hbar (t_{2}-t_{1})}\Bigg )+i(2\theta _{1}+\theta _{2}\nonumber \\{} & {} \quad -2\theta _{3}-\theta _{4})\Bigg ]\times \Bigg \vert \dfrac{3}{2}-ia_{0}\Bigg \vert \Bigg \vert \dfrac{1}{2}-ia_{0}\Bigg \vert \dfrac{1}{a^{2}_{0}(1+a_{0}^{2})}\Bigg \}. \end{aligned}$$
(C18)

In the limit \(\epsilon \rightarrow 0\) there will be divergent terms in \(I_{2}\). These will be cancelled when we take the ratio with D.

The denominator (given by (41)), in the limiting case, is expressed as,

$$\begin{aligned} D= & {} -\dfrac{ie^{\pi a_{0}}}{\pi }\Bigg (-e^{-\pi a_{0}}\Gamma (-1+ia_{0})\Bigg (\dfrac{m\epsilon ^{2}}{2\hbar (t_{2}-t_{1})}\Bigg )^{ia}+\Gamma (1-ia_{0}) \Bigg (\dfrac{m\epsilon ^{2}}{2\hbar (t_{2}-t_{1})}\Bigg )^{-ia}\Bigg )\nonumber \\= & {} -\dfrac{ie^{\pi a_{0}}}{\pi }\Bigg (-e^{-\pi a_{0}}\sqrt{\dfrac{\pi }{a_{0}\sinh (\pi a_{0})}\dfrac{1}{1+a_{0}^{2}}}\nonumber \\{} & {} \quad \exp \Bigg [\Bigg (\ln \dfrac{m\epsilon ^{2}}{2\hbar (t_{2}-t_{1})}\Bigg ) -ia_{0}\ln \Bigg (\dfrac{m\epsilon ^{2}}{2\hbar (t_{2}-t_{1})}\Bigg )+i\theta _{1}\Bigg ]\nonumber \\{} & {} \quad +\sqrt{\dfrac{a_{0}\pi }{\sinh (\pi a_{0})}}\exp \Bigg [-\ln \Bigg (\dfrac{m\epsilon ^{2}}{2\hbar (t_{2}-t_{1})}\Bigg ) +ia_{0}\ln \Bigg (\dfrac{m\epsilon ^{2}}{2\hbar (t_{2}-t_{1})}\Bigg )+i\theta _{3}\Bigg ]\Bigg )\nonumber \\= & {} -\dfrac{ie^{\pi a_{0}}}{\pi }\sqrt{\dfrac{a_{0}\pi }{\sinh (\pi a_{0})}}\exp \Bigg [-\ln \Bigg (\dfrac{m\epsilon ^{2}}{2\hbar (t_{2}-t_{1})}\Bigg ) +ia_{0}\ln \Bigg (\dfrac{m\epsilon ^{2}}{2\hbar (t_{2}-t_{1})}\Bigg )+i\theta _{3}\Bigg ]\nonumber \\{} & {} \quad \times \Bigg (-e^{-\pi a_{0}}\dfrac{1}{a_{0}}\sqrt{\dfrac{1}{1+a_{0}^{2}}}\exp \Bigg [2\ln \Bigg (\dfrac{m\epsilon ^{2}}{2\hbar (t_{2}-t_{1})}\Bigg )\end{aligned}$$
(C19)
$$\begin{aligned}{} & {} \quad -2ia_{0}\ln \Bigg (\dfrac{m\epsilon ^{2}}{2\hbar (t_{2}-t_{1})}\Bigg )+i(\theta _{1}-\theta _{3})\Bigg ]+1\Bigg ). \end{aligned}$$
(C20)

Now, upon taking the ratio of Eq. (C20) and Eq. (C18), we get,

$$\begin{aligned} \dfrac{I_{1}+I_{2}}{D}=e^{-\pi a_{0}/2}(1+e^{2\pi a_{0}})\dfrac{(-i\lambda )^{-3/2}}{2}\sqrt{\dfrac{a_{0}}{\cosh (\pi a_{0})\sinh (\pi a_{0})}}e^{i(\theta _{3}+\theta _{4})}\times \zeta \nonumber \\ \end{aligned}$$
(C21)

where,

$$\begin{aligned} \zeta =\dfrac{-1+e^{-\pi a_{0}} \exp \Bigg [2\ln \Bigg (\dfrac{m\epsilon ^{2}}{2\hbar (t_{2}-t_{1})}\Bigg )-2ia_{0}\ln \Bigg (\dfrac{m\epsilon ^{2}}{2\hbar (t_{2}-t_{1})}\Bigg )+i(2\theta _{1}+\theta _{2} -2\theta _{3}-\theta _{4})\Bigg ]\dfrac{\vert \frac{3}{2}-ia_{0}\vert \vert \frac{1}{2}-ia_{0}\vert }{a^{2}_{0}(1+a_{0}^{2})}}{-e^{-\pi a_{0}}\dfrac{1}{a_{0}}\sqrt{\dfrac{1}{1+a_{0}^{2}}}\exp \Bigg [2\ln \Bigg (\dfrac{m\epsilon ^{2}}{2\hbar (t_{2}-t_{1})}\Bigg )-2ia_{0}\ln \Bigg (\dfrac{m\epsilon ^{2}}{2\hbar (t_{2}-t_{1})}\Bigg )+i(\theta _{1}-\theta _{3})\Bigg ]+1}.\nonumber \\ \end{aligned}$$
(C22)

In the limit \(\epsilon \rightarrow 0\) we have \(\exp \Bigg [\ln \Bigg (\dfrac{m\epsilon ^{2}}{2\hbar (t_{2}-t_{1})}\Bigg )\Bigg ]\rightarrow 0\) and hence, \(\lim _{\epsilon \rightarrow 0}\zeta =-1\). Then (C21) reduces to the simple form Eq. (43).

1.2 2. Evaluation of \(I_{3}/D\)

\(I_3\) is given by (40). Use of the identity Eq. (C1) yields

$$\begin{aligned} I_{3}= & {} -\dfrac{2e^{-\pi a}}{\sinh ^{2}(\pi a)}\Bigg [\dfrac{(p/q)^{ia}(-i\lambda )^{-3/2}}{2\Gamma (1-ia)}\sum _{m=0}^{\infty } \dfrac{\Gamma (m+\frac{3}{2})}{m!\Gamma (m+ia+1)}\Bigg (\dfrac{p^{2}}{4i\lambda }\Bigg )^{m}\nonumber \\{} & {} \quad F \Bigg (-m,-ia-m;-ia+1;\dfrac{q^{2}}{p^{2}}\Bigg )+(a\rightarrow -a)\Bigg ]. \end{aligned}$$
(C23)

In the above expression, \((a\rightarrow -a)\) means, replace “a" in the terms before positive sign which are inside the third bracket by “\(- a\)". Under the limits the above reduces to

$$\begin{aligned} I_{3}= & {} -\dfrac{2e^{-\pi a}}{\sinh ^{2}(\pi a)}\Bigg [\dfrac{(-i\lambda )^{-3/2}\Gamma (3/2)}{2\Gamma (1-ia)\Gamma (ia+1)} \Bigg (-\dfrac{t_{2}-t}{t-t_{1}}\Bigg )^{ia}\nonumber \\{} & {} \quad +\dfrac{(-i\lambda )^{-3/2}\Gamma (3/2)}{2\Gamma (1+ia) \Gamma (1-ia)}\Bigg (-\dfrac{t_{2}-t}{t-t_{1}}\Bigg )^{-ia}\Bigg ] \end{aligned}$$
(C24)

Note that \(I_{3}\) independent of \(\epsilon \). Then it is clearly visible that, due to the divergent part for the limit \(\epsilon \rightarrow 0\) in D (see Eq. (C20)), \(\lim _{\epsilon \rightarrow 0} (1/D)=0\). Hence, in the limit \(\epsilon \rightarrow 0\), \(I_{3}/D\) vanishes and so we have (44).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kane, G.R., Majhi, B.R. Thermality of horizon through near horizon instability: a path integral approach. Gen Relativ Gravit 55, 125 (2023). https://doi.org/10.1007/s10714-023-03174-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03174-9

Keywords

Navigation