Skip to main content
Log in

Fabrication of MoS2 with Dual Defects of O-Doping and S-Vacancies for High-Efficiency Hydrogen Production

  • Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Developing excellent electrocatalysts is a significant step in accelerating the widespread implementation of the electrochemical hydrogen evolution reaction (HER). MoS2 is one of the promising alternatives to platinum-based catalysts, while its HER activity is far from Pt due to the lack of active sites. It is urgent to develop a novel strategy to activate the basal planes of MoS2 for enhancing the HER activity. Herein, a facile hydrothermal method with a low-temperature H2O2 etching method is developed to fabricate MoS2 with O-doped and S-vacancy dual defects. The dual defects MoS2 nanosheet demonstrates remarkable hydrogen evolution reaction (HER) activity, achieving 10 mA cm−2 with a small overpotential of around 143 mV in 0.5 M H2SO4.

Graphical Abstract

Construct dual-defect MoS2 via a facile hydrothermal method and mild H2O2 etching process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

All data that support the findings of this study are included within the article (and any supplementary files).

References

  1. O.J. Guerra, J. Eichman, J. Kurtz, B.M. Hodge, Cost competitiveness of electrolytic hydrogen. Joule. 3, 2425–2443 (2019). https://doi.org/10.1016/j.joule.2019.07.006

    Article  Google Scholar 

  2. J. Kibsgaard, I. Chorkendorff, Considerations for the scaling-up of water splitting catalysts. Nat. Energy 4, 430–433 (2019). https://doi.org/10.1038/s41560-019-0407-1

    Article  Google Scholar 

  3. J. Linnemann, K. Kanokkanchana, K. Tschulik, design strategies for electrocatalysts from an electrochemist’s perspective. ACS Catal. 11, 5318–5346 (2021). https://doi.org/10.1021/acscatal.0c04118

    Article  CAS  Google Scholar 

  4. J. Song, C. Wei, Z.F. Huang, C. Liu, L. Zeng, X. Wang, Z.J. Xu, A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 49, 2196–2214 (2020). https://doi.org/10.1039/c9cs00607a

    Article  CAS  PubMed  Google Scholar 

  5. S. Anantharaj, V. Aravindan, Developments and perspectives in 3D transition-metal-based electrocatalysts for neutral and near-neutral water electrolysis. Adv. Energy Mater. 10, 1–30 (2020). https://doi.org/10.1002/aenm.201902666

    Article  CAS  Google Scholar 

  6. T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007). https://doi.org/10.1126/science.1141483

    Article  CAS  PubMed  Google Scholar 

  7. Y. Yin, J. Han, Y. Zhang, X. Zhang, P. Xu, Q. Yuan, L. Samad, X. Wang, Y. Wang, Z. Zhang, P. Zhang, X. Cao, B. Song, S. Jin, Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J. Am. Chem. Soc. 138, 7965–7972 (2016). https://doi.org/10.1021/jacs.6b03714

    Article  CAS  PubMed  Google Scholar 

  8. H. Li, C. Tsai, A.L. Koh, L. Cai, A.W. Contryman, A.H. Fragapane, J. Zhao, H.S. Han, H.C. Manoharan, F. Abild-pedersen, J.K. Nørskov, Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 48–53 (2016). https://doi.org/10.1038/nmat4564

    Article  CAS  PubMed  Google Scholar 

  9. X. Hou, H. Zhou, M. Zhao, Y. Cai, Q. Wei, MoS2 nanoplates embedded in Co-N-doped carbon nanocages as efficient catalyst for HER and OER. ACS Sustain. Chem. Eng. 8, 5724–5733 (2020). https://doi.org/10.1021/acssuschemeng.0c00810

    Article  CAS  Google Scholar 

  10. D. Kong, H. Wang, J.J. Cha, M. Pasta, K.J. Koski, J. Yao, Y. Cui, Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 13, 1341–1347 (2013). https://doi.org/10.1021/nl400258t

    Article  CAS  PubMed  Google Scholar 

  11. J. Feng, Z. Zhao, R. Tang, Y. Zhao, T. Meng, Interfacial structural and electronic regulation of MoS2 for promoting its kinetics and activity of alkaline hydrogen evolution. ACS Appl. Mater. Interfaces 13, 53262–55327 (2021). https://doi.org/10.1021/acsami.1c17031

    Article  CAS  PubMed  Google Scholar 

  12. Y. Zhou, Y. Liu, W. Zhao, F. Xie, R. Xu, B. Li, X. Zhou, H. Shen, Growth of vertically aligned MoS2 nanosheets on a Ti substrate through a self-supported bonding interface for high-performance lithium-ion batteries a general approach. J. Mater. Chem. A Mater. 4, 5932–5941 (2016). https://doi.org/10.1039/c6ta01116k

    Article  CAS  Google Scholar 

  13. J. Rong, Y. Ye, J. Cao, X. Liu, H. Fan, S. Yang, M. Wei, L. Yang, J. Yang, Y. Chen, Restructuring electronic structure via W doped 1T MoS2 for enhancing hydrogen evolution reaction. Appl. Surf. Sci. 579, 152216–152224 (2021). https://doi.org/10.1016/j.apsusc.2021.152216

    Article  CAS  Google Scholar 

  14. X. Chen, Z. Wang, Y. Wei, X. Zhang, Q. Zhang, L. Gu, L. Zhang, N. Yang, R. Yu, High phase-purity 1T-MoS2 ultrathin nanosheets by a spatially confined template. Angew. Chem. Int. Ed. 58, 17621–17624 (2019). https://doi.org/10.1002/anie.201909879

    Article  CAS  Google Scholar 

  15. L. Wang, X. Zhang, Y. Xu, C. Li, W. Liu, S. Yi, K. Wang, X. Sun, Z.S. Wu, Y. Ma, Tetrabutylammonium-intercalated 1T-MoS2 nanosheets with expanded interlayer spacing vertically coupled on 2D delaminated MXene for high-performance lithium-ion capacitors. Adv. Funct. Mater. 31, 1–11 (2021). https://doi.org/10.1002/adfm.202104286

    Article  CAS  Google Scholar 

  16. R. Zhang, M. Zhang, H. Yang, G. Li, S. Xing, M. Li, Y. Xu, Q. Zhang, S. Hu, H. Liao, Y. Cao, Creating fluorine-doped MoS2 edge electrodes with enhanced hydrogen evolution activity, Small. Methods 5, 1–7 (2021). https://doi.org/10.1002/smtd.202100612

    Article  CAS  Google Scholar 

  17. Y. Shi, Y. Zhou, D.R. Yang, W.X. Xu, C. Wang, F. Bin Wang, J.J. Xu, X.H. Xia, H.Y. Chen, Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction, J. Am. Chem. Soc. 139, 15479–15485 (2017). https://doi.org/10.1021/jacs.7b08881

  18. X. Yang, X. Li, Y. Wang, C. Ye, Z. Du, H. Yu, J. Liu, L. Chen, B. Su, Efficient etching of oxygen-incorporated molybdenum disulfide nanosheet arrays for excellent electrocatalytic hydrogen evolution. Appl. Surf. Sci. 491, 245–255 (2019). https://doi.org/10.1016/j.apsusc.2019.06.153

    Article  CAS  Google Scholar 

  19. J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan, Y. Xie, Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 135, 17881–17888 (2013). https://doi.org/10.1021/ja408329q

    Article  CAS  PubMed  Google Scholar 

  20. X.-Y. Li, S.-J. Zhu, Y.-L. Wang, T. Lian, X. Yang, C.-F. Ye, Y. Li, B.-L. Su, L.-H. Chen, Synergistic regulation of S-vacancy of MoS2-based materials for highly efficient electrocatalytic hydrogen evolution. Front. Chem. 10, 1–17 (2022). https://doi.org/10.3389/fchem.2022.915468

    Article  CAS  Google Scholar 

  21. T. Lian, X. Li, Y. Wang, S. Zhu, X. Yang, Z. Liu, C. Ye, J. Liu, Y. Li, B. Su, L. Chen, Boosting highly active exposed Mo atoms by fine-tuning S-vacancies of MoS2-based materials for efficient hydrogen evolution. ACS Appl. Mater. Interfaces 14, 30746–30759 (2022). https://doi.org/10.1021/acsami.2c05444

    Article  CAS  PubMed  Google Scholar 

  22. X. Wang, Y.Y. Zhang, H. Si, Q. Zhang, J. Wu, L. Gao, X. Wei, Y. Sun, Q. Liao, Z. Zhang, K. Ammarah, L. Gu, Z. Kang, Y.Y. Zhang, Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J. Am. Chem. Soc. 142, 4298–4308 (2020). https://doi.org/10.1021/jacs.9b12113

    Article  CAS  PubMed  Google Scholar 

  23. S. Park, J. Park, H. Abroshan, L. Zhang, J.K. Kim, J. Zhang, J. Guo, S. Siahrostami, X. Zheng, Enhancing catalytic activity of MoS2 basal plane S-vacancy by co cluster addition. ACS Energy Lett. 3, 2685–2693 (2018). https://doi.org/10.1021/acsenergylett.8b01567

    Article  CAS  Google Scholar 

  24. C.C. Cheng, A.Y. Lu, C.C. Tseng, X. Yang, M.N. Hedhili, M.C. Chen, K.H. Wei, L.J. Li, Activating basal-plane catalytic activity of two-dimensional MoS2 monolayer with remote hydrogen plasma. Nano Energy 30, 846–852 (2016). https://doi.org/10.1016/j.nanoen.2016.09.010

    Article  CAS  Google Scholar 

  25. L. Li, Z. Qin, L. Ries, S. Hong, T. Michel, J. Yang, C. Salameh, M. Bechelany, P. Miele, D. Kaplan, D. Voiry, M. Chhowalla, D. Voiry, Role of sulfur vacancies and undercoordinated mo regions in MoS2 nanosheets toward the evolution of hydrogen. ACS Nano 13, 6824–6834 (2019). https://doi.org/10.1021/acsnano.9b01583

    Article  CAS  PubMed  Google Scholar 

  26. C. Tsai, H. Li, S. Park, J. Park, H.S. Han, J.K. Nørskov, X. Zheng, F. Abild-pedersen, Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution. Nat. Commun. 8, 1–8 (2017). https://doi.org/10.1038/ncomms15113

    Article  CAS  Google Scholar 

  27. P. Zhang, H. Xiang, L. Tao, H. Dong, Y. Zhou, T.S. Hu, X. Chen, S. Liu, S. Wang, S. Garaj, Chemically activated MoS2 for efficient hydrogen poduction. Nano Energy 57, 535–541 (2019). https://doi.org/10.1016/j.nanoen.2018.12.045

    Article  CAS  Google Scholar 

  28. M. Wu, J. Liao, L. Yu, R. Lv, P. Li, W. Sun, R. Tan, X. Duan, L. Zhang, F. Li, J. Kim, K.H. Shin, H. Seok Park, W. Zhang, Z. Guo, H. Wang, Y. Tang, G. Gorgolis, C. Galiotis, J. Ma, Roadmap on carbon materials for energy storage and conversion. Chem. Asian J. 15(2020), 995–1013 (2020). https://doi.org/10.1002/asia.201901802

    Article  CAS  PubMed  Google Scholar 

  29. X. Chen, B. Put, A. Sagara, K. Gandrud, M. Murata, J.A. Steele, H. Yabe, T. Hantschel, M. Roeffaers, M. Tomiyama, H. Arase, Y. Kaneko, M. Shimada, M. Mees, P.M. Vereecken, Silica gel solid nanocomposite electrolytes with interfacial conductivity promotion exceeding the bulk li-ion conductivity of the ionic liquid electrolyte filler, Sci. Adv. 6, (2020). https://doi.org/10.1126/sciadv.aav3400

  30. J. Xu, G. Shao, X. Tang, F. Lv, H. Xiang, C. Jing, S. Liu, S. Dai, Y. Li, J. Luo, Z. Zhou, Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution. Nat. Commun. 13, 2193–2201 (2022). https://doi.org/10.1038/s41467-022-29929-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Y. Zheng, T. Zhou, C. Zhang, J. Mao, H. Liu, Z. Guo, boosted charge transfer in SnS/SnO2 heterostructures: toward high rate capability for sodium-ion batteries. Angew. Chem. Int. Ed. 55, 3408–3413 (2016). https://doi.org/10.1002/anie.201510978

    Article  CAS  Google Scholar 

  32. Y. Wan, Z. Zhang, X. Xu, Z. Zhang, P. Li, X. Fang, K. Zhang, K. Yuan, K. Liu, G. Ran, Y. Li, Y. Ye, L. Dai, Engineering active edge sites of fractal-shaped single-layer MoS2 catalysts for high-efficiency hydrogen evolution. Nano Energy 51, 786–792 (2018). https://doi.org/10.1016/j.nanoen.2018.02.027

    Article  CAS  Google Scholar 

  33. J. Lin, S. Zuluaga, P. Yu, Z. Liu, S.T. Pantelides, K. Suenaga, Novel Pd2Se3 two-dimensional phase driven by interlayer fusion in layered PdSe2. Phys. Rev. Lett. 119, 1700–1701 (2017). https://doi.org/10.1103/PhysRevLett.119.016101

    Article  Google Scholar 

  34. Y. Dong, B. Zeng, J. Xiao, X. Zhang, D. Li, M. Li, J. He, M. Long, Effect of sulphur vacancy and interlayer interaction on the electronic structure and spin splitting of bilayer MoS2. J. Phys. Condens. Matter 30, 125302 (2018). https://doi.org/10.1088/1361-648X/aaad3b

    Article  PubMed  Google Scholar 

  35. X. Zhang, S. Wang, C.-K. Lee, C.-M. Cheng, J.-C. Lan, X. Li, J. Qiao, X. Tao, Unravelling the effect of sulfur vacancies on the electronic structure of the MoS2 crystal. Phys. Chem. Chem. Phys. 22, 21776–21783 (2020). https://doi.org/10.1039/C9CP07004D

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This article received support from key projects of the Anhui Provincial Department of Education, China (Grant No. KJ2021ZD0044), the University Natural Science Research Project of Anhui Province (KJ2021A0380), and the Anhui Provincial Natural Science Foundation (1908085QE179, 2208085ME110).

Author information

Authors and Affiliations

Authors

Contributions

Jianmin Wang: conceptualization, methodology, visualization, formal analysis, writing – original draft, investigation, data curation. Hongyu Zhao and Hao Zhang: software, visualization. Ruoyu Huang: investigation, data curation. Jiajia Cai: formal analysis.Jing Hu: formal analysis, resources. Zhijie Chen: formal analysis. Yongtao Lig: writing – review & editing, funding acquisition, supervision. Haijin Li: writing – review & editing, funding acquisition, supervision, project administration.

Corresponding authors

Correspondence to Jianmin Wang or Haijin Li.

Ethics declarations

Ethical Approval

All procedures performed in studies involving human participants were by the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 561 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Zhang, H., Huang, R. et al. Fabrication of MoS2 with Dual Defects of O-Doping and S-Vacancies for High-Efficiency Hydrogen Production. Electrocatalysis 15, 20–28 (2024). https://doi.org/10.1007/s12678-023-00850-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-023-00850-x

Keywords

Navigation