Skip to main content
Log in

Physicochemical and Catalytic Properties of the Mo–Zr/ZSM-5 Catalysts of Methane Dehydroaromatization

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The effect of the method for the introduction of zirconium in the 4Mo/ZSM-5 catalyst and of its amount on the physicochemical and catalytic properties of the catalyst during the nonoxidative conversion of methane into aromatic hydrocarbons (benzene and naphthalene) has been studied. The catalyst was modified with zirconium by impregnation and solid phase mixing. The resulting zeolite catalysts were studied by IR spectroscopy, X-ray diffraction analysis, low-temperature nitrogen adsorption, temperature-programmed ammonia desorption, scanning and transmission electron microscopy, and simultaneous thermal analysis. With an increase in the zirconium concentration introduced in the 4Mo/ZSM-5 catalyst, the strength and concentration of its strong acid sites that are responsible for methane aromatization decrease regardless of the method of modification. The particle size and morphology of the catalyst, the distribution of Mo and Zr in them, and the presence of coke deposits on their surface were determined by scanning and transmission electron microscopy. The catalytic tests and subsequent thermal analysis of the samples showed that the addition of zirconium to the 4Mo/ZSM-5 catalyst leads not only to an increase in its catalytic activity, but also to operational stability due to the lower rate of coke formation. It was established that 4Mo/ZSM-5 modified with 1 wt % Zr by solid-phase synthesis is the most effective catalyst in methane dehydroaromatization (DHA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. S. Ma, X. Guo, L. Zhao, et al., J. Energy Chem. 22, 1 (2013). https://doi.org/10.1016/S2095-4956(13)60001-7

    Article  Google Scholar 

  2. B. Wang, S. Albarracin-Suazo, Y. Pagan-Torres, et al., Catal. Today 285, 147 (2017). https://doi.org/10.1016/j.cattod.2017.01.023

    Article  CAS  Google Scholar 

  3. V. Ramasubramanian, H. Ramsurn, and G. L. Price, J. Energy Chem. 34, 20 (2019). https://doi.org/10.1016/j.jechem.2018.09.018

    Article  Google Scholar 

  4. E. C. Corredor, P. Chitta, and M. D. Deo, Fuel Process. Technol. 183, 55 (2019). https://doi.org/10.1016/j.fuproc.2018.05.038

    Article  CAS  Google Scholar 

  5. M. Rahman, A. Infantes-Molina, A. Boubnov, et al., J. Catal. 375, 314 (2019). https://doi.org/10.1016/j.jcat.2019.06.002

    Article  CAS  Google Scholar 

  6. L. Shen, L. Lin, Z. Xu, et al., J. Catal. 157, 190 (1995). https://doi.org/10.1006/jcat.1995.1279

    Article  Google Scholar 

  7. D. Kiani, S. Sourav, Y. Tang, et al., Chem. Soc. Rev. 50, 1251 (2021). https://doi.org/10.1039/D0CS01016B

    Article  CAS  PubMed  Google Scholar 

  8. U. Menon, M. Rahman, and S. J. Khatib, Appl. Catal. A 608, 117870 (2020). https://doi.org/10.1016/j.apcata.2020.117870

  9. Y. Ogawa, Y. Xu, Z. Zhang, et al., Resour. Chem. Mater. 1, 80 (2022). https://doi.org/10.1016/j.recm.2022.01.004

    Article  Google Scholar 

  10. N. Kosinov and E. J. M. Hensen, Adv. Mater. 32, 2002565 (2020). https://doi.org/10.1002/adma.202002565

  11. L. Chen, L. Lin, Z. Xu, et al., Catal. Lett. 39, 169 (1996). https://doi.org/10.1007/BF00805578

    Article  CAS  Google Scholar 

  12. L. Wang, Y. Xu, S. Wong, et al., Appl. Catal. A 152, 173 (1997). https://doi.org/10.1016/S0926-860X(96)00366-3

    Article  CAS  Google Scholar 

  13. S. Liu, Q. Dong, R. Ohnishi, et al., Chem. Commun., No. 15, 1445 (1997). https://doi.org/10.1039/A702731A

  14. Q. Wang and W. Lin, J. Nat. Gas Chem. 13, 91 (2004). https://doi.org/10.1109/TIP.2004.823822

    Article  CAS  Google Scholar 

  15. A. Sridhar, M. Rahman, A. Infantes-Molina, et al., Appl. Catal. A 589, 117247 (2020). https://doi.org/10.1016/j.apcata.2019.117247

  16. L. N. Vosmerikova, A. N. Volynkina, A. V. Vosmerikov, et al., NefteGazoKhim., No. 1, 37 (2015).

  17. L. L. Korobitsyna, K. N. Zharnov, A. A. Stepanov, et al., J. Sib. Fed. Univ., Chem. 12, 118 (2019). https://doi.org/10.17516/1998-2836-0111

    Article  Google Scholar 

  18. A. I. Gusev, Nano-Crystalline Materials: Methods of Obtaining and Properties (IPM UrO RAN, Yekaterinburg, 1998) [in Russian].

    Google Scholar 

  19. D. Shukla and V. Pandya, J. Chem. Tech. Biotechnol. 44, 147 (1983).

    Article  Google Scholar 

  20. A. V. Vosmerikov, G. V. Echevskii, L. L. Korobitsyna, Ya. E. Barabashin, N. V. Arbuzova, E. G. Kodenev, and S. P. Zhuravkov, Kinet. Catal. 46, 724 (2005). https://doi.org/10.1007/s10975-005-0128-2

    Article  CAS  Google Scholar 

  21. V. I. Zaikovskii, A. V. Vosmerikov, V. F. Anufrienko, L. L. Korobitsyna, E. G. Kodenev, G. V. Echevskii, N. T. Vasenin, S. P. Zhuravkov, Z. R. Ismagilov, and V. N. Parmon, Dokl. Phys. Chem. 404, 201 (2005). https://doi.org/10.1007/s10634-005-0060-1

    Article  CAS  Google Scholar 

  22. F. G. Denardin and O. W. Perez-Lopez, Micropor. Mesopor. Mater. 295, 109961 (2020). https://doi.org/10.1016/j.micromeso.2019.109961

  23. A. A. Stepanov, L. L. Korobitsyna, and A. V. Vosmerikov, Catal. Ind. 14, 11 (2022). https://doi.org/10.1134/S2070050422010093

    Article  Google Scholar 

  24. Y. Song, Q. Zhang, Y. Xu, et al., Appl. Catal. A 530, 12 (2017). https://doi.org/10.1016/j.apcata.2016.11.016

    Article  CAS  Google Scholar 

Download references

Funding

This study was performed under the government contract at the Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences, and was financially supported by the Ministry of Science and Higher Education of the Russian Federation. The HRTEM study of the catalysts was performed using the equipment of the Multiaccess Center “National Center for the Study of Catalysts.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Vosmerikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budaev, Z.B., Korobitsyna, L.L., Stepanov, A.A. et al. Physicochemical and Catalytic Properties of the Mo–Zr/ZSM-5 Catalysts of Methane Dehydroaromatization. Russ. J. Phys. Chem. 97, 2405–2414 (2023). https://doi.org/10.1134/S0036024423110055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423110055

Keywords:

Navigation