Skip to main content
Log in

Thermochemical Characteristics of 2,6-Di-tert-butyl-para-benzoquinone

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The combustion energy of crystalline 2,6-di-tert-butyl-para-benzoquinone was determined by static-bomb combustion calorimetry at T = 298.15 K. The standard molar enthalpies of combustion and formation of the compound were calculated using the experimental values of combustion energies. The obtained thermochemical characteristics of 2,6-di-tert-butyl-para-benzoquinone were compared with the literature data for previously studied benzoquinone derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. C. E. Pereyra, R. F. Dantas, S. B. Ferreira, et al., Cancer Cell Int. 19, 1 (2019). https://doi.org/10.1186/s12935-019-0925-8

    Article  Google Scholar 

  2. M. Campora, V. Francesconi, S. Schenone, et al., Pharmaceuticals 14, 1 (2021). https://doi.org/10.3390/ph14010033

    Article  CAS  Google Scholar 

  3. S. Bakasso, A. Lamien-Meda, C. E. Lamien, et al., Pak. J. Biol. Sci. 11, 1429 (2008). https://doi.org/10.3923/pjbs.2008.1429.1435

    Article  CAS  PubMed  Google Scholar 

  4. Q. Ma, R. Wei, and Z. Sang, Nat. Prod. Commun. 15, 1 (2020). https://doi.org/10.1177/1934578X20902898

    Article  Google Scholar 

  5. G. Bringmann, J. Mutanyatta-Comar, M. Knauer, et al., Nat. Prod. Rep. 25, 696 (2008). https://doi.org/10.1039/B803784C

    Article  CAS  PubMed  Google Scholar 

  6. B. R. Jali, Biointerface Res. Appl. Chem. 11, 11679 (2021). https://doi.org/10.33263/BRIAC114.1167911699

    Article  Google Scholar 

  7. C. Balachran, N. A. Al-Dhabi, V. Duraipandiyan, et al., Biotechnol. Lett. 43, 1005 (2021). https://doi.org/10.1007/s10529-021-03089-y

    Article  CAS  Google Scholar 

  8. N. El-Najjar, H. Gali-Muhtasib, R. A. Ketola, et al., Phytochem. Rev. 10, 353 (2011). https://doi.org/10.1007/s11101-011-9209-1

    Article  CAS  Google Scholar 

  9. A. Khan, M. Tania, S. Fu, et al., Oncotarget 8, 51907 (2017). https://doi.org/10.18632/oncotarget.17206

    Article  Google Scholar 

  10. F. Ballout, Z. Habli, and O. N. Rahal, et al., Drug Discov. Today 23, 1089 (2018). https://doi.org/10.1016/j.drudis.2018.01.043

    Article  CAS  PubMed  Google Scholar 

  11. A. Ahmad, R. K. Mishra, A. Vyawahare, et al., Saudi Pharm. J. 27, 1113 (2019). https://doi.org/10.1016/j.jsps.2019.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. P. M. S. Sahoo, S. Behera, R. Behura, et al., Biointerface Res. Appl. Chem. 12, 3247 (2022). https://doi.org/10.33263/BRIAC123.32473258

    Article  CAS  Google Scholar 

  13. G. F. Kelso, C. M. Porteous, C. V. Coulter, et al., J. Biol. Chem. 276, 4588 (2001). https://doi.org/10.1074/jbc.M009093200

    Article  CAS  PubMed  Google Scholar 

  14. R. Xiong, D. Siegel, and D. Ross, Toxicol. Appl. Pharmacol. 280, 285 (2014). https://doi.org/10.1007/s12640-018-9953-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. K. R. Olson, K. J. Clear, P. J. Derry, et al., Free Radic. Biol. Med. 182, 119 (2022). https://doi.org/10.1016/j.freeradbiomed.2022.02.018

    Article  CAS  PubMed  Google Scholar 

  16. N. Chatron, A. Hammed, E. Benoit, et al., Nutrients 11, 1 (2019). https://doi.org/10.3390/nu11010067

    Article  CAS  Google Scholar 

  17. M. D. Stone and G. L. Nelsestuen, in Encyclopedia of Biological Chemistry (Elsevier, Amsterdam, 2004), p. 394. https://doi.org/10.1016/B0-12-443710-9/00738-9

    Book  Google Scholar 

  18. T. Tran, E. Saheba, A. V. Arcerio, et al., Bioorg. Med. Chem. 12, 4809 (2004). https://doi.org/10.1007/s00044-016-1550-x

    Article  CAS  PubMed  Google Scholar 

  19. F. Lobermann, L. Weisheit, and D. Trauner, Org. Lett. 15, 4324 (2013). https://doi.org/10.1021/ol401787n

    Article  CAS  PubMed  Google Scholar 

  20. R. Hielscher, M. Yegres, M. Voicescu, et al., Biochemistry 52, 8993 (2013). https://doi.org/10.1021/bi4009903

    Article  CAS  PubMed  Google Scholar 

  21. X. Lu, A. Altharawi, J. Gut, et al., Med. Chem. Lett. 3, 1029 (2012). https://doi.org/10.1021/ml300242v

    Article  CAS  Google Scholar 

  22. J. R. Caille, A. Debuigne, and R. Jérôme, Macromolecules 38, 27 (2005). https://doi.org/10.1021/MA048561O

    Article  CAS  Google Scholar 

  23. P. Hodge and J. E. Gautrot, Polym. Int. 58, 261 (2009). https://doi.org/10.1002/PI.2528

    Article  CAS  Google Scholar 

  24. R. Riikka, Academic Dissertation (Univ. Helsinski, Helsinski, 2002).

  25. B. Dulo, K. Phan, and J. Githaiga, Waste Biomass Valoriz. 12, 6339 (2021). https://doi.org/10.1007/s12649-021-01443-9

    Article  CAS  Google Scholar 

  26. N. M. Ankudinov, Yu. V. Nelyubina, and D. S. Perekalin, Chem. Eur. J. 28, 1 (2022). https://doi.org/10.1002/chem.202200195

    Article  CAS  Google Scholar 

  27. S. Er, C. Suh, M. P. Marshak, et al., Chem. Sci. 6, 885 (2015). https://doi.org/10.1039/c4sc03030c

    Article  CAS  PubMed  Google Scholar 

  28. K. I. Pashanova, G. A. Abakumov, A. V. Markin, et al., J. Chem. Thermodyn. 92, 76 (2016). https://doi.org/10.1016/j.jct.2015.09.003

    Article  CAS  Google Scholar 

  29. K. I. Pashanova, P. E. Goryunova, S. S. Sologubov, et al., J. Chem. Eng. Data 66, 1970 (2021). https://doi.org/10.1021/acs.jced.0c01042

    Article  CAS  Google Scholar 

  30. K. Omura, Synthesis 1998, 1145 (1998). https://doi.org/10.1055/s-1998-2118

    Article  Google Scholar 

  31. B. Lebedev, T. Kulagina, N. Smirnova, et al., Macromol. Chem. Phys. 205, 230 (2004). https://doi.org/10.1002/macp.200300039

    Article  CAS  Google Scholar 

  32. C. E. Vanderzee, M. Månsson, and S. Sunner, J. Chem. Thermodyn. 4, 533 (1972). https://doi.org/10.1016/0021-9614(72)90075-4

    Article  CAS  Google Scholar 

  33. F. D. Rossini, Experimental Thermochemistry (Interscience, New York, 1956), p. 75.

    Google Scholar 

  34. D. D. Wagman, W. H. Evans, V. B. Parker, et al., J. Phys. Chem. Ref. Data 11 (Suppl. 2) (1982).

  35. E. W. Washburh, J. Res. Natl. Bur. Standards 10, 525 (1933).

    Article  Google Scholar 

  36. J. D. Cox, D. D. Wagman, and V. A. Medvedev, CODATA Key Values for Thermodynamics (Hemisphere, New York, 1989).

    Google Scholar 

  37. G. Pilcher and L. E. Sutton, J. Chem. Soc., 2695 (1956).

Download references

Funding

This study was performed at the Laboratory of the Chemistry of Natural Compounds and Their Synthetic Analogs, created under the government contract at the Technoplatform 2035 Scientific and Educational Center (project FSWR-2021-014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Markin.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goryunova, P.E., Pashanova, K.I., Novichkov, G.A. et al. Thermochemical Characteristics of 2,6-Di-tert-butyl-para-benzoquinone. Russ. J. Phys. Chem. 97, 2350–2353 (2023). https://doi.org/10.1134/S0036024423110092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423110092

Keywords:

Navigation