Skip to main content
Log in

Design and Synthesis of Phenylacridine-Based on Organic Dyes and Its Applications in Dye-Sensitized Solar Cells

  • PHOTOCHEMISTRY, MAGNETOCHEMISTRY, MECHANOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Dimethylphenyldihydroacridine dyes are an important type of organic molecule that are used in dye-sensitized solar cells. Two new organic dyes, namely (E)-3-(7-bromo-9,9-dimethyl-10-phenyl-9,10-dihydroacridin-2-yl)acrylic acid (DPAA) and (E)-3-(7-bromo-9,9-dimethyl-10-phenyl-9,10-dihydroacridin-2-yl)-2-cyanoacrylic acid (DPACA) were synthesized and developed as photosensitizers for DSSCs. The DPAA and DPACA dyes are characterized using Fourier Transform Infrared (FT-IR), nuclear magnetic resonance spectroscopy (NMR), and Ultraviolet-visible (UV–Vis) spectroscopy. Cyclic voltammetry (CV) and Density functional theory (DFT) calculations have been used to evaluate the energy level of dyes. The electronic excitations and charge transport properties are investigated using time-dependent density functional theory (TD-DFT) methods. The energy levels of Highest occupied molecular orbital (HOMO) and Lowest unoccupied molecular orbital (LUMO) molecular orbitals can be tuned by varying the π-conjugated units and the donating possibility of the donor part. The relationship between the structure of the dye and the photophysical, photovoltaic, and performance characteristics of Dye-sensitized solar cells (DSSCs) is investigated in depth. In addition, some quantitative parameters influencing the efficiency of power conversion, such as electron injection driving and light-harvesting efficiency have been calculated to identify the organic dyes for DSSCs applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. L. L. Estrella, S. H. Lee, and D. H. Kim, Dyes Pigm. 165, 1 (2019). https://doi.org/10.1016/j.dyepig.2019.02.002

    Article  CAS  Google Scholar 

  2. M. Megala, Beulah, and J. M. Rajkumar, J. Comput. Electron. 18, 1128 (2019). https://doi.org/10.1007/s10825-019-01398-0

    Article  CAS  Google Scholar 

  3. K. Periyasamy, P. Sakthivel, P. Vennila, P. M. Anbarasan, G. Venkatesh, and Y. Sheena Mary, J. Photochem. Photobiol. A 413, 113269 (2021). https://doi.org/10.1016/j.jphotochem.2021.113269

  4. O. Britel, A. Fitri, A. T. Benjelloun, A. Slimi, M. Benzakour, and M. Mcharfi, J. Photochem. Photobiol. A 429, 113902 (2022). https://doi.org/10.1016/j.jphotochem.2022.113902

  5. K. Periyasamy P. Sakthivel, G. Venkatesh, P. M. Anbarasan, P. Vennila, Y. Sheena Mary, S. Kaya, and S. Erkan, J. Mol. Model. 28, 34 (2022). https://doi.org/10.1007/s00894-022-05026-w

    Article  CAS  Google Scholar 

  6. S. A. H. Vuai, M. Salum Khalfan, and N. Surendra Babu, Heliyon 7, e08339 (2021). https://doi.org/10.1016/j.heliyon.2021.e08339

  7. M. Megala, Beulah, and J. M. Rajkumar, J. Comput. Electron. 17, 1153 (2018). https://doi.org/10.1007/s10825-018-1195-8

    Article  CAS  Google Scholar 

  8. H. Cheng, Y. Wu, J. Su, Z. Wang, R. Prasad Ghimire, M. Liang, Z. Sun, and S. Xue, Dyes Pigm. 149, 16 (2018). https://doi.org/10.1016/j.dyepig.2017.09.053

    Article  CAS  Google Scholar 

  9. Zh.-B. Cai, Sh.-Sh. Liu, B. Li, Q.-J. Dong, Z.-L. Liu, M. Zheng, Sh.-L. Li, Y.-P. Tian, L.-J. Chen, and Q. Ye, Dyes Pigm. 165, 200 (2019). https://doi.org/10.1016/j.dyepig.2019.01.032

    Article  CAS  Google Scholar 

  10. J.-M. Ji, H. Zhou, Y. K. Eom, Ch. H. Kim, and H. K. Kim, Adv. Energy Mater. 10, 2000124 (2020). https://doi.org/10.1002/aenm.202000124

  11. T. Saravana Kumaran, A. Prakasam, P. M. Anbarasan, P. Vennila, G. Venkatesh, S. Parveen Banu, and Y. Sheena Mary, J. Comput. Biophys. Chem. 20, 465 (2021). https://doi.org/10.1142/S2737416521500253

    Article  Google Scholar 

  12. Y. K. Eom, S. H. Kang, I. T. Choi, Y. Yoo, J. Kim, and H. K. Kim, J. Mater. Chem. A. 5, 2297 (2017). https://doi.org/10.1039/C6TA09836C

    Article  CAS  Google Scholar 

  13. L. Li, Y. Wu, Q. Zhou, and Ch. He, J. Phys. Org. Chem. 25, 362 (2012). https://doi.org/10.1002/poc.1923

    Article  CAS  Google Scholar 

  14. D. Joly, L. Pellejà, S. Narbey, F. Oswald, T. Meyer, Y. Kervella, P. Maldivi, J. N. Clifford, E. Palomares, and R. Demadrille, Energy Environ. Sci. 8, 2010 (2015). https://doi.org/10.1039/C5EE00444F

    Article  CAS  Google Scholar 

  15. S. Sudhaker Reddy, W. Cho, V. Gopalan Sree, and S. H. Jin, Dyes Pigm. 134, 324 (2016). https://doi.org/10.1016/j.dyepig.2016.07.034

    Article  CAS  Google Scholar 

  16. M. Hosseinnezhad, S. Moradian, K. Gharanjig, and F. Afshar Taromi, Adv. Perform. Mater. 29, 112 (2014). https://doi.org/10.1179/1753555713Y.0000000107

    Article  CAS  Google Scholar 

  17. S. Fukuzumi, H. Kotani, Y. M. Lee, and W. Nam, J. Am. Chem. Soc. 130, 15134 (2008). https://doi.org/10.1021/ja804969k

    Article  CAS  PubMed  Google Scholar 

  18. R. Tarsang, V. Promarak, T. Sudyoadsuk, S. Namuangruk, N. Kungwan, and S. Jungsuttiwong, Chem. Phys. Chem. 15, 3809 (2014). https://doi.org/10.1002/cphc.201402458

    Article  CAS  PubMed  Google Scholar 

  19. L. L. Estrella, S. Hee Lee, and D. Hee Kim, Dyes Pigm. 165, 1 (2019). https://doi.org/10.1016/j.dyepig.2019.02.002

    Article  CAS  Google Scholar 

  20. M. P. Balanay, C. M. Enopia, S. H. Lee, and D. H. Kim, Spectrochim. Acta, Part A 104, 382 (2015). https://doi.org/10.1016/j.saa.2015.01.002

    Article  CAS  Google Scholar 

  21. L. L. Estrella, M. P. Balanay, and D. H. Kim, J. Phys. Chem. A 120, 5917 (2016). https://doi.org/10.1021/acs.jpca.6b03271

    Article  CAS  PubMed  Google Scholar 

  22. S. H. Kim, H. W. Kim, C. Sakong, J. Namgoong, S. W. Park, M. J. Ko, C. H. Lee, W. I. Lee, and J. P. Kim, Org. Lett. 13, 5784 (2011). https://doi.org/10.1021/ol2023517

    Article  CAS  PubMed  Google Scholar 

  23. B. H. Kim and H. S. Freeman, J. Mater. Chem. 22, 20403(2012). https://doi.org/10.1039/C2JM33228K

    Article  CAS  Google Scholar 

  24. J. Li, Z. Zhuang, X. Zhu, Z. Zhao, and B. Zh. Tang, J. Soc. Inf. Disp. 2, 139 (2020). https://doi.org/10.1080/15980316.2020.1784805

    Article  CAS  Google Scholar 

  25. D. Cheng, D. Xu, Y. Wang, H. Zhou, Z. Zhou, X. Liu, A. Han, and C. Zhang, Dyes Pigm. 173, 107937 (2020). https://doi.org/10.1016/j.dyepig.2019.107937

  26. T. Saravanakumaran, A. Prakasam, G. Venkatesh, C. Kamal, Y. Sheena Mary, S. Parveen Banu, P. Vennila, and Y. Shyma Mary, Zeitschr. Phys. Chem. 235, 1355 (2021). https://doi.org/10.1515/zpch-2020-1732

    Article  CAS  Google Scholar 

  27. X. Xu, Z. Cao, and Q. Zhang, J. Chem. Phys. 122, 194305 (2005). https://doi.org/10.1063/1.1895673

  28. Y. Ait Aicha, S. M. Bouzzine, T. Zair, M. Bouachrine, M. Hamidi, Z. Mohyieddine Fahim, G. Salgado Moran, L. Mendoza Huizar, L. Alvarado Soto, and R. Ramirez Tagle, J. Theor. Comput. Chem. 15, 165002 (2016). https://doi.org/10.1142/S0219633616500231

  29. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, et al., Gaussian 16, Revision A.03 (Gaussian Inc., Wallingford, CT, 2016).

    Google Scholar 

  30. A. El Alamy, M. Bourass, A. Amine, and M. Hamidi, Int. J. Mod. Sci. 3, 75 (2017). https://doi.org/10.1016/j.kijoms.2017.03.002

    Article  Google Scholar 

  31. W. S. Aroon, S. Laopha, P. Chaiamornnugool, S. Tontapha, S. Saekow, and V. Amornkitbamrung, J. Mol. Model. 19, 1407 (2013). https://doi.org/10.1007/s00894-012-1692-9

    Article  CAS  Google Scholar 

  32. X. Yang, J. Walpita, D. Zhou, H. Ling Luk, Sh. Vyas, R. S. Khnayzer, S. C. Tiwari, K. Diri, Ch. M. Hadad, F. N. Castellano, A. I. Krylova, and K. D. Glusac, J. Phys. Chem. B 117, 15290 (2013). https://doi.org/10.1021/jp401770e

    Article  CAS  PubMed  Google Scholar 

  33. D. S. Patil, K. C. Avhad, and N. Sekar, Comput. Theor. Chem. 1138, 75 (2018). https://doi.org/10.1016/j.comptc.2018.06.006

    Article  CAS  Google Scholar 

  34. S. A. Elroby and A. Jedidi, Struct. Chem. 31, 1125 (2020). https://doi.org/10.1007/s11224-020-01489-w

    Article  CAS  Google Scholar 

  35. D. Devadiga, M. Selvakumar, P. Shetty, M. G. Mahesha, D. Devadiga, T. N. Ahipa, and S. Senthil Kumar, J. Solid State Electrochem. 25, 1461 (2021). https://doi.org/10.1007/s10008-021-04920-2

    Article  CAS  Google Scholar 

  36. M. S. Abusaif, M. Fathy, M. A. Abu-Saied, A. A. Elhenawy, A. B. Kashyout, M. R. Selim, and Y. A. Ammar, J. Mol. Struct. 1225, 129297 (2021). https://doi.org/10.1016/j.molstruc.2020.129297

  37. S. Mandal, G. R. Kandregula, and V. Naga Baji Tokala, J. Photochem. Photobiol. A 401, 112745 (2020). https://doi.org/10.1016/j.jphotochem.2020.112745

  38. Y. Sheng Yen, J. Ling Hsu, Y. Tse Cheng, Y. Chan Hsu, and J. T. Lin, Mol. Cryst. Liq. Cryst. 703, 32 (2020). https://doi.org/10.1080/15421406.2020.1743940

    Article  CAS  Google Scholar 

  39. S. F. Abdulhussein, S. M. Abdalhadi, and H. D. Hanoon, Egypt. J. Chem. 65, 211 (2022). https://doi.org/10.21608/ejchem.2022.115059.5221

    Article  Google Scholar 

  40. R. M. El-Shishtawy, A. M. Asiri, S. G. Aziz, and A. K. Elroby Shaaban, J. Mol. Model. 20, 2241 (2014). https://doi.org/10.1007/s00894-014-2241-5

    Article  CAS  PubMed  Google Scholar 

  41. S. Gauthier, F. Robin-Le Guen, L. Wojcik, N. L Poul, A. Planchat, Y. Pellegrin, P. Guevara Level, N. Szuwarski, M. Boujtita, D. Jacquemin, and F. Odobel, Solar Energy 205, 310 (2020). https://doi.org/10.1016/j.solener.2020.05.036

    Article  CAS  Google Scholar 

  42. T. Saravana Kumaran, A. Prakasam, P. Vennila, S. Parveen Banu, and G. Venkatesh, Asian J. Chem. 33, 1541 (2021). https://doi.org/10.14233/ajchem.2021.23197

    Article  CAS  Google Scholar 

  43. R. Kesavan, I. M. Abdellah, S. P. Singh, A. El-Shafei, and A. V. Adhikari, Phys. Chem. Chem. Phys. 21, 10603 (2019). https://doi.org/10.1039/C9CP01032G

    Article  CAS  PubMed  Google Scholar 

  44. P. Vennila, M. Govindaraju, G. Venkatesh, C. Kamal, Y. Sheena Mary, C. Yohannan Panicker, S. Kaya, St. Armakovi, and S. J. Armakovi, J. Mol. Struct. 1151, 245 (2018). https://doi.org/10.1016/j.molstruc.2017.09.049

    Article  CAS  Google Scholar 

  45. A. K. Mishra and S. P. Tewari, SN Appl. Sci. 2, 1021 (2020). https://doi.org/10.1007/s42452-020-2842-9

    Article  CAS  Google Scholar 

  46. D. A. Kleinman, Phys. Rev. 26, 1977 (1962). https://doi.org/10.1103/PhysRev.126.1977

    Article  Google Scholar 

  47. M. Hachi, A. Slimi, A. Fitri, A. Touimi Benjelloun, S. El Khattabi, M. Benzakour, M. Mcharfi, M. Khenfouch, I. Zorkani, and M. Bouachrine, J. Photochem. Photobiol. A 407, 113048 (2021). https://doi.org/10.1016/j.jphotochem.2020.113048

  48. M. R. Elmorsy, E. Abdel-Latif, S. A. Badawy, and A. A. Fadda, J. Photochem. Photobiol., A 389, 112239 (2020). https://doi.org/10.1016/j.jphotochem.2019.112239

  49. M. M. Jadhav, J. V. Vaghasiya, D. Patil, S. S. Soni, and N. Sekar, J. Photochem. Photobiol., A 377, 119 (2019). https://doi.org/10.1016/j.jphotochem.2019.03.043

    Article  CAS  Google Scholar 

  50. P. Vennila, G. Venkatesh, Y. Sixto-López, C. Kamal, S. Kaya, G. Serdaroğlu, and B. Landeros-Rivera, J. Mol. Struct. 1246, 131164 (2021). https://doi.org/10.1016/j.molstruc.2021.131164

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Saravana Kumaran or G. Venkatesh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saravana Kumaran, T., Prakasam, A., Venkatesh, G. et al. Design and Synthesis of Phenylacridine-Based on Organic Dyes and Its Applications in Dye-Sensitized Solar Cells. Russ. J. Phys. Chem. 97, 2607–2623 (2023). https://doi.org/10.1134/S0036024423110298

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423110298

Keywords:

Navigation