Skip to main content
Log in

The Exploration of Cerium Metal Ions Effect on LaSrTiO3 – δ Ceramic Anode for Fuel Cell

  • ELECTROCHEMISTRY. GENERATION AND STORAGE OF ENERGY FROM RENEWABLE SOURCES
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Perovskite based materials have become an attractive anode for fuel cell due to the significant conductivity, carbon resistivity and sulphur tolerance. Doping of Ce on B-site of the La0.4Sr0.6CexTi1−xO\(_{{3-\delta }}\) (x = 0.02, 0.04, 0.06, 0.08) with different dopant concentrations is prepared using sol-gel technique. The synthesized material is analyzed by numerous techniques. X-ray diffraction confirmed the cubic perovskite structure (JCPDS 01-079- 0183) with average crystallite size of 35 nm. UV–Vis spectroscopy revealed the red shift in band gap (2.76 eV) compared to LaSrTiO\(_{{3-\delta }}\). Scanning electron microscopy shows the homogeneity and porosity in the prepared material. The observed particle size is in the range of 50–60 nm. The presence of the lanthanum, strontium, cerium, titanium and oxygen ions is confirmed by EDX. The Raman spectra and XRD, confirmed that cerium ions have been diffused in the lattice structure of LSTO\(_{{3-\delta }}\). The La0.4Sr0.6Ce0.08Ti0.92O\(_{{3-\delta }}\) anode showed the highest conductivity of 2.67 S cm–1 with lower activation energy of 0.20 eV as compared to other three samples. The power density of 58 mW cm–2 at 600°C with 0.9 V OCV is achieved for the composition La0.4Sr0.6Ce0.08Ti0.92O\(_{{3-\delta }}\) using sub-bituminous fuel. The observed results show that prepared material is potential ceramic anode for direct carbon fuel cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. Bahrami and P. Abbaszadeh, Renewable Sustainable Energy Rev. 24, 198 (2013).

    Article  Google Scholar 

  2. P. Périllat-Merceroz, G. Gauthier, P. Roussel, et al., Chem. Mater. 23, 1539 (2011).

    Article  Google Scholar 

  3. S. Hussain and L. Yangping, Energy Trans. 4, 113 (2020).

    Article  Google Scholar 

  4. S. Dwivedi, Int. J. Hydrogen Energy 45, 23988 (2020).

    Article  CAS  Google Scholar 

  5. P. Aguiar, C. S. Adjiman, and N. P. Brandon, J. Power Sources 138, 120 (2020).

    Article  Google Scholar 

  6. J. Li, T. Lv, N. Hou, et al., Int. J. Hydrogen Energy 42, 22294 (2017).

    Article  CAS  Google Scholar 

  7. H. Yoon, J. Zou, N. M. Sammes, et al., Int. J. Hydrogen Energy 40, 10985 (2015).

    Article  CAS  Google Scholar 

  8. X. Zhou, N. Yan, K. T. Chuang, et al., RSC Adv. 4, 118 (2014).

    Article  CAS  Google Scholar 

  9. D. Sarantaridis and A. Atkinson, Fuel Cells 7, 246 (2007).

    Article  CAS  Google Scholar 

  10. M. Gong, X. Liu, J. Trembly, et al., J. Power Sources 168, 289 (2007).

    Article  CAS  Google Scholar 

  11. Z. Du, H. Zhao, X. Zhou, et al., Int. J. Hydrogen Energy 38, 1068 (2013).

    Article  CAS  Google Scholar 

  12. X. Li, H. Zhao, F. Gao, et al., Electrochem. Commun. 10, 1567 (2008).

    Article  CAS  Google Scholar 

  13. X. Li, H. Zhao, N. Xu, et al., Int. J. Hydrogen Energy 34, 6407 (2009).

    Article  CAS  Google Scholar 

  14. A. Kulkarni, S. Giddey, S. P. S. Badwal, et al., Electrochim. Acta 121, 34 (2014).

    Article  CAS  Google Scholar 

  15. A. Ali, R. Raza, M. I. Shakir, et al., J. Power Sources 434, 126679 (2019).

  16. A. Ali, R. Raza, M. A. Khalil, et al., ACS Appl. Energy Mater. 3, 9182 (2020).

    CAS  Google Scholar 

  17. A. Ali, S. Munir, M. Majeed, et al., ACS Appl. Energy Mater. 5, 6878 (2022).

    CAS  Google Scholar 

  18. U. Balachandran and N. G. Eror, J. Am. Ceram. Soc. 65, c54 (1982).

    Article  CAS  Google Scholar 

  19. G. Saravanan, K. Ramachandran, J. Gajendiran, et al., Chem. Phys. Lett. 746, 137314 (2020).

  20. X. Wang, Y. Zhang, J. Zhu, et al., Ceram. Int. 40, 16557 (2014).

    Article  CAS  Google Scholar 

  21. N. Danilovic, A. Vincent, J. L. Luo, et al., Chem. Mater. 22, 957 (2010).

    Article  CAS  Google Scholar 

  22. S. Tao and J. T. Irvine, Nat. Mater. 2, 320 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Y. Liu, S. Wang, J. Qian, et al., Int. J. Hydrogen Energy 38, 14053 (2013).

    Article  CAS  Google Scholar 

  24. P. I. Cowin, R. Lan, C. T. Petit, et al., Solid State Sci. 46, 62 (2015).

    Article  CAS  Google Scholar 

  25. X. Kong, X. Zhou, Y. Tian, et al., J. Power Sources 316, 224 (2015).

    Article  Google Scholar 

  26. A. D. Aljaberi and J. Irvine, J. Mater. Chem. A 1, 5868 (2013).

    Article  CAS  Google Scholar 

  27. Z. Du, H. Zhao, X. Zhou, et al., Int. J. Hydrogen Energy 38, 1068 (2013).

    Article  CAS  Google Scholar 

  28. A. Yaqub, C. Savaniu, N. K. Janjua, et al., J. Mater. Chem. A 1, 14189 (2013).

    Article  CAS  Google Scholar 

  29. A. Yaqub, N. K. Janjua, C. Savaniu, et al., Int. J. Hydrogen Energy 40, 760 (2015).

    Article  CAS  Google Scholar 

  30. M. K. Rath, B. G. Ahn, B. H. Choi, et al., Ceram. Int. 39, 6343 (2013).

    Article  CAS  Google Scholar 

  31. A. Ali, F. S. Bashir, R. Raza, et al., Int. J. Hydrogen Energy 43, 12900 (2018).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Punjab Higher Education Commission (PHEC) through PIRCA research Grant no. PHEC/ARA/PIRCA/20372/17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amjad Ali.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhan, M., Ali, A., Ali, Z. et al. The Exploration of Cerium Metal Ions Effect on LaSrTiO3 – δ Ceramic Anode for Fuel Cell. Russ. J. Phys. Chem. 97, 2592–2602 (2023). https://doi.org/10.1134/S0036024423110249

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423110249

Keywords:

Navigation