Skip to main content
Log in

Effect of Non-Metallic Doping and Tensile Strain on Photoelectric Properties of 1T-ZrS2 Monolayer

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In this paper, the effects of doping VIA group non-metallic elements (O, Se, Te) on the optoelectronic properties of monolayer 1T-ZrS2 were calculated using a first-principles approach. The results showed that the doped atoms could successfully modulate the band gap of monolayer 1T-ZrS2. By applying biaxial tensile strain in the x–y direction, it is found that the band gap of the pristine monolayer 1T-ZrS2 increases first and then decreases, reaching the maximum at 6%. On this basis, a further 6% tensile strain was applied to the three doped systems. It was found that after applying strain, the band gap of all doped systems increased, and the indirect band gap changed to a direct band gap, improving the luminescence efficiency of the materials. The analysis of the optical properties revealed that all systems have a high reflectance of photons in the near ultraviolet region, which had a considerable impact on the transmittance. The study’s findings offer a theoretical guide for using monolayer 1T-ZrS2 in microelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. F. Schwierz, Nat. Nanotechnol. 5, 487 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. L. Wei, G. L. Liu, D. Z. Fan, et al., Phys. B (Amsterdam, Neth.) 545, 99 (2018).

  3. J. N. Coleman, M. Lotya, et al., Science (Washington, DC, U. S.) 331, 568 (2011).

    Article  CAS  Google Scholar 

  4. Z. Zeng, Z. Yin, X. Huang, et al., Angew. Chem. 123, 11289 (2011).

    Article  Google Scholar 

  5. M. Zhang, Y. Zhu, X. Wang, et al., J. Am. Chem. Soc. 137, 7051 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. L. Li, H. Wang, X. Fang, et al., Energy Environ. Sci. 4, 2586 (2011).

    Article  CAS  Google Scholar 

  7. Y. L. Zhang, X. C. Wu, Y. R. Tao, et al., Chem. Commun., No. 23, 2683 (2008).

  8. L. Li, X. Fang, T. Zhai, et al., Adv. Mater. 22, 4151 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. X. Zhao, X. Zhang, T. Wang, et al., J. Alloys Compd. 748, 798 (2018).

    Article  CAS  Google Scholar 

  10. H. Xiang, B. Xu, W. Zhao, et al., RSC Adv. 9, 13561 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Q. Xin, X. Zhao, X. Ma, et al., Phys. E (Amsterdam, Neth.) 93, 87 (2017).

  12. H. Y. Lv, W. J. Lu, D. F. Shao, et al., J. Mater. Chem. C 4, 4538 (2016).

    Article  CAS  Google Scholar 

  13. M. D. Segall, P. J. D. Lindan, M. J. Probert, et al., J. Phys.: Condens. Matter 14, 2717 (2002).

    CAS  Google Scholar 

  14. J. P. Perdew, Phys. Rev. B 33, 8822 (1986).

    Article  CAS  Google Scholar 

  15. X. Xue, X. Wang, Y. Song, et al., J. Alloys Compd. 739, 723 (2018).

    Article  CAS  Google Scholar 

  16. Y. Li, J. Kang, and J. Li, RSC Adv. 4, 7396 (2014).

    Article  CAS  Google Scholar 

  17. H. Zhang, Y. Zhang, H. X. Chen, et al., Thin Solid Films 735, 138875 (2021).

  18. J. Bao, L. Yang, and S. Chen, Russ. J. Phys. Chem. A 96, 2900 (2022).

    Article  CAS  Google Scholar 

  19. J. Singh, B. Singh, G. Singh, et al., AIP Conf. Proc. 1942, 090020 (2018).

  20. M. Zemzemi, N. Elghoul, K. Khirouni, et al., J. Exp. Theor. Phys. 118, 235 (2014).

    Article  CAS  Google Scholar 

  21. D. Wang, L. Yang, and J. Cao, Mod. Phys. Lett. B 35, 2141002 (2021).

  22. N. Wu, X. Zhao, X. Ma, et al., Phys. E (Amsterdam, Neth.) 93, 1 (2017).

  23. S. Chen, L. Yang, and D. Wang, Russ. J. Phys. Chem. A 96, 3031 (2022).

    Article  CAS  Google Scholar 

  24. T. V. Vu, A. A. Lavrentyev, D. V. Thuan, et al., Superlatt. Microstruct. 125, 205 (2019).

    Article  CAS  Google Scholar 

  25. G. Tse and D. Yu, Comput. Condens. Matter 4, 59 (2015).

    Article  Google Scholar 

  26. K. Wang, Q. Xiao, Q. Xie, et al., J. Electron. Mater. 48, 5135 (2019).

    Article  CAS  Google Scholar 

  27. A. A. Mubarak, Int. J. Mod. Phys. B 30, 1650141 (2016).

  28. Q. Zhao, Y. Guo, K. Si, et al., Phys. Status Solidi B 254, 1700033 (2017).

  29. D. Wang, L. Yang, and J. Cao, Chem. Phys. 546, 111181 (2021).

Download references

Funding

The work was supported by National Natural Science Foundation of China (Approval no. 11102118); Liaoning Province “Millions of Talents Project” Fund (Approval no. 100010131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Yang.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Yang, L. & Bao, J. Effect of Non-Metallic Doping and Tensile Strain on Photoelectric Properties of 1T-ZrS2 Monolayer. Russ. J. Phys. Chem. 97, 2501–2509 (2023). https://doi.org/10.1134/S0036024423110353

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423110353

Keywords:

Navigation