Skip to main content
Log in

Thermodynamics of the Oxygen Reduction Reaction on Surfaces of Nitrogen-Doped Graphene

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

DFT modeling is used to calculate the free energy profiles of oxygen reduction in acidic and alkaline media on surfaces of nitrogen-doped graphene rather than defect-free graphene. Both four- and two-electron mechanisms of associative reaction are considered. Calculations are made in the grand canonical ensemble at a fixed electrode potential. It is shown that calculations at a fixed potential differ considerably from ones generally accepted at a fixed surface charge. It is found that the electrocatalytic effect of the nitrogen impurity is associated with an increase in the OOH intermediate’s energy of chemisorption that reduces the energy of the oxygen molecule’s protonation reaction. It is also shown that a nitrogen impurity inhibits the two-electron reaction mechanism in an alkaline medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. T. B. Ferriday and P. H. Middleton, Int. J. Hydrogen Energy 46, 18489 (2021).

    Article  CAS  Google Scholar 

  2. R. Ma, G. Lin, Y. Zhou, et al., Npj Comput. Mater. 5, 78 (2019).

    Google Scholar 

  3. L. Zhang, C. Lin, D. Zhang, et al., Adv. Mater. 31, 1805252 (2019).

  4. B. Wang, B. Liu, and L. Dai, Adv. Sustain. Syst. 5, 2000134 (2021).

  5. Y. Jia, L. Zhang, L. Zhuang, et al., Nat. Catal. 2, 688 (2019).

    Article  CAS  Google Scholar 

  6. H. Begum, M. S. Ahmed, and Y.-B. Kim, Sci. Rep. 10, 12431 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. H. Tabassum, R. Zou, A. Mahmood, et al., J. Mater. Chem. A 4, 16469 (2016).

    Article  CAS  Google Scholar 

  8. L. Lai, J. Potts, D. Zhan, et al., Energy Environ. Sci. 5, 7936 (2012).

    Article  CAS  Google Scholar 

  9. K. Wan, Z.-P. Yu, X.-H. Li, et al., ACS Catal. 5, 4325 (2015).

    Article  CAS  Google Scholar 

  10. M. Rauf, Y.-D. Zhao, Y.-C. Wang, et al., Electrochem. Commun. 73, 71 (2016).

    Article  CAS  Google Scholar 

  11. H. Yang, J. Miao, S.-F. Hung, et al., Sci. Adv. 2, e1501122 (2016).

  12. I. T. Kim, M. Song, Y. Kim, et al., Int. J. Hydrogen Energy 41, 22026 (2016).

    Article  CAS  Google Scholar 

  13. D. Guo, R. Shibuya, C. Akiba, et al., Science (Washington, DC, U. S.) 351 (6271), 361 (2016).

    Article  CAS  Google Scholar 

  14. Y. Okamoto, Appl. Surf. Sci. 256, 335 (2009).

    Article  CAS  Google Scholar 

  15. T. Ikeda, M. Boero, S.-F. Huang, et al., J. Phys. Chem. C 112, 14706 (2008).

    Article  CAS  Google Scholar 

  16. L. Zhang and Z. Xia, J. Phys. Chem. C 115, 11170 (2011).

    Article  CAS  Google Scholar 

  17. X. Wan and J. Shui, Sci. Adv. 1, e1400129 (2022).

  18. J. K. Norskov, J. Rossmeisl, A. Logadottir, et al., J. Phys. Chem. B 108, 17886 (2004).

    Article  CAS  Google Scholar 

  19. L. Yu, X. Pan, X. Cao, et al., J. Catal. 282, 183 (2011).

    Article  CAS  Google Scholar 

  20. H. Oberhofer, Handbook of Materials Modeling. Methods: Theory and Modeling (Springer Int., Cham, 1987).

    Google Scholar 

  21. R. Sundararaman, W. A. Goddard, and T. A. Arias, J. Chem. Phys. 146, 114104 (2017).

  22. D. Kim, J. Shi, and Y. Liu, J. Am. Chem. Soc. 140, 9127 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. V. A. Kislenko, S. V. Pavlov, and S. A. Kislenko, Electrochim. Acta 341, 136011 (2020).

  24. S. V. Pavlov, V. A. Kislenko, and S. A. Kislenko, J. Phys. Chem. 124, 18147 (2020).

    Article  CAS  Google Scholar 

  25. G. Gao and L.-W. Wang, J. Catal. 391, 530 (2020).

    Article  CAS  Google Scholar 

  26. R. Sundararaman, K. Letchworth-Weaver, K. Schwarz, et al., SoftwareX 6, 278 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. S. Grimme, J. Antony, S. Ehrlich, et al., J. Chem. Phys. 132, 154104 (2010).

  28. K. F. Garrity, J. W. Bennett, K. M. Rabe, et al., Comput. Mater. Sci. 81, 446 (2014).

    Article  CAS  Google Scholar 

  29. K. Kakaei, M. D. Esrafili, and A. Ehsani, in Graphene Surfaces (Elsevier, Amsterdam, 2019), Vol. 27, Chap. 6, p. 203.

    Google Scholar 

  30. H. J. Yan, B. Xu, S. Q. Shi, and C. Y. Ouyang, J. Appl. Phys. 112, 104316 (2012).

  31. D. Gunceler, K. Letchworth-Weaver, R. Sundararaman, et al., Model. Simul. Mater. Sci. Eng. 21, 74005 (2013).

    Article  Google Scholar 

  32. N. Ashcroft and D. Mermin, Solid State Physics (Cengage Learning, 1976).

  33. D. C. Sorescu, K. D. Jordan, and P. Avouris, J. Phys. Chem. B 105, 11227 (2001).

    Article  CAS  Google Scholar 

  34. I. Heller, J. Kong, K. A. Williams, et al., J. Am. Chem. Soc. 128, 7353 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. G. I. Savin, B. M. Shabanov, P. N. Telegin, and A. V. Baranov, Lobachevskii J. Math. 40, 1853 (2019).

    Article  Google Scholar 

  36. I. Zacharov, R. Arslanov, M. Gunin, et al., Open Eng. 9, 512 (2019).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The research was carried out using supercomputers at Joint Supercomputer Center of the Russian Academy of Sciences (JSCC RAS) [35] and the Skoltech supercomputer Zhores [36].

Funding

This work was supported by a grant from the Russian Science Foundation, project no. 22-23-00535.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kislenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Kudrinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kislenko, V.A., Pavlov, S.V. & Kislenko, S.A. Thermodynamics of the Oxygen Reduction Reaction on Surfaces of Nitrogen-Doped Graphene. Russ. J. Phys. Chem. 97, 2354–2361 (2023). https://doi.org/10.1134/S0036024423110158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423110158

Keywords:

Navigation