Skip to main content
Log in

Recovering semiclassical Einstein’s equation using generalized entropy

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this letter, we show that the Semiclassical Einstein’s Field Equation can be recovered using the generalized entropy \(S_{gen}\). This approach is reminiscent of non-equilibrium thermodynamics. Furthermore, contrary to the entanglement equilibrium approach of deriving the semiclassical Einstein’s equation, this approach does not require any such assumptions and still recovers its correct form. Therefore, in a sense, we also show the validity of the semiclassical approximation, a crucial approach for establishing a number of important ideas such as the Hawking effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. In this paper we set \(k_B=c=1\).

  2. The metric for a static patch in de-Sitter space is given by \(ds^2=-[1-(r/L)^2]dt^2+[1-(r/L)^2]^{-1}dr^2+r^2d\Omega ^2_2\).

  3. As can be noted here. In contrast with the classical case, the semiclassical case requires the vanishing of quantum expansion \(\Theta \) to zeroth order and not the classical expansion \(\theta \) for the semiclassical Einstein’s equation to hold. This can be understood as follows: The quantum fields violate the classical focusing while even in this the quantum focusing (\(d\Theta /d\lambda \le 0\)) holds. Therefore, focusing to the past of p must bring the quantum expansion to zero so that the increase in generalized entropy \(S_{gen}\) is proportional to the killing energy across it. This imposes a condition on the spacetime curvature that is governed by the evolution Eq. (17). The same cannot be said for the classical focusing since it does not hold in the semiclassical case.

References

  1. Hawking, S.W.: Gravitational radiation from colliding black holes. Phys. Rev. Lett. 26(21), 1344 (1971)

    Article  ADS  Google Scholar 

  2. Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43(3), 199–220 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Jacobson, T.: Thermodynamics of spacetime: the Einstein equation of state. Phys. Rev. Lett. 75(7), 1260–1263 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Eling, C., Guedens, R., Jacobson, T.: Nonequilibrium thermodynamics of spacetime. Phys. Rev. Lett. 96(12), 121301 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  6. Chirco, G., Liberati, S.: Nonequilibrium thermodynamics of spacetime: the role of gravitational dissipation. Phys. Rev. D 81(2), 024016 (2010)

    Article  ADS  Google Scholar 

  7. Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14(4), 870 (1976)

    Article  ADS  Google Scholar 

  8. Padmanabhan, T.: Thermodynamical aspects of gravity: new insights. Rep. Prog. Phys. 73(4), 046901 (2010)

    Article  ADS  Google Scholar 

  9. Mukhopadhyay, A., Padmanabhan, T.: Holography of gravitational action functionals. Phys. Rev. D 74(12), 124023 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  10. Kothawala, D., Sarkar, S., Padmanabhan, T.: Einstein’s equations as a thermodynamic identity: the cases of stationary axisymmetric horizons and evolving spherically symmetric horizons. Phys. Lett. B 652(5–6), 338–342 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Kothawala, D., Padmanabhan, T.: Thermodynamic structure of Lanczos–Lovelock field equations from near-horizon symmetries. Phys. Rev. D 79(10), 104020 (2009)

    Article  ADS  Google Scholar 

  12. Kolekar, S., Padmanabhan, T.: Holography in action. Phys. Rev. D 82(2), 024036 (2010)

    Article  ADS  Google Scholar 

  13. Verlinde, E.: On the origin of gravity and the laws of newton. J. High Energy Phys. 2011(4), 1–27 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Susskind, L.: The world as a hologram. J. Math. Phys. 36(11), 6377–6396 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Hooft, G.: Dimensional reduction in quantum gravity. arXiv preprint arXiv:gr-qc/9310026 (1993)

  16. Bousso, R., Fisher, Z., Leichenauer, S., Wall, A.C.: Quantum focusing conjecture. Phys. Rev. D 93(6), 064044 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  17. Bousso, R.: A covariant entropy conjecture. J. High Energy Phys. 1999(07), 004 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bousso, R.: The holographic principle. Rev. Mod. Phys. 74(3), 825 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Bousso, R., Flanagan, E.E., Marolf, D.: Simple sufficient conditions for the generalized covariant entropy bound. Phys. Rev. D 68(6), 064001 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  20. Bousso, R., Casini, H., Fisher, Z., Maldacena, J.: Proof of a quantum Bousso bound. Phys. Rev. D 90(4), 044002 (2014)

    Article  ADS  Google Scholar 

  21. Bousso, R., Casini, H., Fisher, Z., Maldacena, J.: Entropy on a null surface for interacting quantum field theories and the Bousso bound. Phys. Rev. D 91(8), 084030 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. Flanagan, E.E., Marolf, D., Wald, R.M.: Proof of classical versions of the Bousso entropy bound and of the generalized second law. Phys. Rev. D 62(8), 084035 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  23. Strominger, A., Thompson, D.: Quantum Bousso bound. Phys. Rev. D 70(4), 044007 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  24. Wall, A.C.: The generalized second law implies a quantum singularity theorem. Class. Quantum Gravity 30(16), 165003 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Bousso, R., Shahbazi-Moghaddam, A.: Quantum singularities. arXiv preprint arXiv:2206.07001 (2022)

  26. Bousso, R., Engelhardt, N.: Generalized second law for cosmology. Phys. Rev. D 93(2), 024025 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  27. Bousso, R., Fisher, Z., Koeller, J., Leichenauer, S., Wall, A.C.: Proof of the quantum null energy condition. Phys. Rev. D 93(2), 024017 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  28. Balakrishnan, S., Faulkner, T., Khandker, Z.U., Wang, H.: A general proof of the quantum null energy condition. J. High Energy Phys. 2019(9), 1–86 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ceyhan, F., Faulkner, T.: Recovering the QNEC from the ANEC. Commun. Math. Phys. 377, 999–1045 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Shahbazi-Moghaddam, A.: Restricted quantum focusing. arXiv preprint arXiv:2212.03881 (2022)

  31. Jacobson, T.: Entanglement equilibrium and the Einstein equation. Phys. Rev. Lett. 116(20), 201101 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  32. Bueno, P., Min, V.S., Speranza, A.J., Visser, M.R.: Entanglement equilibrium for higher order gravity. Phys. Rev. D 95(4), 046003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  33. Casini, H., Galante, D.A., Myers, R.C.: Comments on Jacobson’s “entanglement equilibrium and the Einstein equation’’. J. High Energy Phys. 2016(3), 1–34 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jacobson, T., Visser, M.R.: Gravitational thermodynamics of causal diamonds in (A) dS. SciPost Phys. 7(6), 079 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  35. Dey, R., Liberati, S., Pranzetti, D.: Spacetime thermodynamics in the presence of torsion. Phys. Rev. D 96(12), 124032 (2017)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referee who provided detailed comments and useful suggestions that greatly improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naman Kumar.

Ethics declarations

Conflicts of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N. Recovering semiclassical Einstein’s equation using generalized entropy. Gen Relativ Gravit 55, 127 (2023). https://doi.org/10.1007/s10714-023-03172-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03172-x

Keywords

Navigation