Skip to main content
Log in

Metalens for Detection of a Topological Charge

  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

In this paper, we considered design of the complex metalens with high numerical aperture. It proposed to be manufactured in a thin film of silicon nitride. The element represents two slanted sectored metalenses, every sector of which is binary sub-wavelength gratings set. The diameter of the proposed lens is 14 µm. Numerical modelling by applying the finite difference time-domain method demonstrated that the proposed element was able to detect laser vortex beams with different topological charges –2 and –1. Moreover, it can operate over the whole visible range of light. The proposed metalens is able to discern beams with different wavelengths since they are focused in different focal planes. The change of wavelength in a 1 nm produces the shift of focal spot in about 4 nm. In the case of a Gaussian incident beam with left circular polarizing, this metalens simultaneously forms two vortex beams with topological charges one and two at the focal length of 6 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Wang, W., Guo, Z., Zhou, K., Sun, Y., Shen, F., Li, Y., Qu, S., and Liu, S., Polarization-independent longitudinal multi-focusing metalens, Opt. Express, 2015, vol. 23, no. 23, pp. 29855–29866.

    Article  Google Scholar 

  2. Tian, S., Guo, H., Hu, J., and Zhuang, S., Dielectric longitudinal bifocal metalens with adjustable intensity and high focusing efficiency, Opt. Express, 2019, vol. 27, no. 2, pp. 680–688.

    Article  Google Scholar 

  3. Kim, C., Kim, S., and Lee, B., Doublet metalens design for high numerical aperture and simultaneous correction of chromatic and monochromatic aberrations, Opt. Express, 2020, vol. 28, no. 12, pp.18059–18076.

    Article  Google Scholar 

  4. Li, M., Li, S., Chin, L., Yu, Y., Tsai, D., and Chen, R., Dual-layer achromatic metalens design with an effective Abbe number, Opt. Express, 2020, vol. 28, no 18, pp. 26041–26055.

    Article  Google Scholar 

  5. Kotlyar, V.V., Stafeev, S.S., O’Faolain, L., and Kotlyar, M.V., High numerical aperture metalens for the formation of energy backflow, Comput. Opt., 2020, vol. 44, no. 5, pp. 691–698.

    Article  Google Scholar 

  6. Skidanov, R.V., Doskolovich, L.L., Ganchevskaya, S.V., Blank, V.A., Podlipnov, V.V., and Kazanskiy, N.L., Experiment with a diffractive lens with a fixed focus position at several given wavelengths, Comput. Opt., 2020, vol. 44, no. 1, pp. 22–28.

    Article  Google Scholar 

  7. Hsiao, H.-H., Chu, C.H., and Tsai, D.P., Fundamentals and applications of metasurfaces, Small Methods, 2017, vol. 1, no. 4, pp. 1600064.

    Article  Google Scholar 

  8. Shan, D., Xu, N., Gao, J., Song, N., Liu, H., Tang, Y., Feng, X., Wang, Y., Zhao, Y., Chen, X., and Sun, Q., Design of the all-silicon long-wavelength infrared achromatic metalens based on deep silicon etching, Opt. Express, 2022, vol. 30, no. 8, pp. 13616–13629.

    Article  Google Scholar 

  9. Chantakit, T., Schlickriede, C., Sain, B., Meyer, F., Weiss, T., Chattham, N., and Zentgraf, T., All-dielectric silicon metalens for two-dimensional particle manipulation in optical tweezers, Photonics Res., 2020, vol. 8, no. 9, pp. 1435–1440.

    Article  Google Scholar 

  10. Fan, C., Chuang, T., Wu, K., and Su, G., Electrically modulated varifocal metalens combined with twisted nematic liquid crystals, Opt. Express, 2020, vol. 28, no. 7, pp. 10609–10617.

    Article  Google Scholar 

  11. Ma, X., He, W., Xin, L., Yang, Z., and Liu, Z., Imaging performance of a mid-infrared metalens with a machining error, Appl. Opt., 2022, vol. 61, no. 1, pp. 60–68.

    Article  Google Scholar 

  12. Qian, Z., Tian, S., Zhou, W., Wang, J., and Guo, H., Broadband achromatic longitudinal bifocal metalens in the visible range based on a single nanofin unit cell, Opt. Express, 2022, vol. 30, pp. 11203–11216. .https://doi.org/10.1364/OE.450601

    Article  Google Scholar 

  13. Xie, Y., Zhang, J., Wang, S., Liu, D., and Wu, X., Broadband polarization-insensitive metalens integrated with a charge-coupled device in the short-wave near-infrared range. Opt. Express, 2022, vol. 30, no 7, pp. 11372–11383.

    Article  Google Scholar 

  14. Hsiao, H.-H., Chen, Y.H., Lin, R.J., Wu, P.C., Wang, S., Chen, B.H., and Tsai, D.P., Integrated resonant unit of metasurfaces for broadband efficiency and phase manipulation, Adv. Opt. Mater., 2018, vol. 6, no. 12, pp. 1800031.

    Article  Google Scholar 

  15. Liu, M., Cao, J., Xu, N., and Wang, B., Broadband achromatic metalens for linearly polarized light from 450 to 800  nm, Appl. Opt., 2021, vol. 60, no. 30, pp. 9525–9529.

    Article  Google Scholar 

  16. Wang, W., Guo, Z., Li, R., Zhang, J., Liu, Y., Wang, X., and Qu, S., Ultra-thin, planar, broadband, dual-polarity plasmonic metalens, Photonics Res., 2015, vol. 3, no. 3, pp. 68–71.

    Article  Google Scholar 

  17. Ye, H., Sun, Q., Guo, Z., Hou, Y., Wen, F., Yuan, D., Qin, F., and Zhou, G., Theoretical realization of single-mode fiber integrated metalens for beam collimating, Opt. Express, 2021, vol. 29, no. 17, pp. 27521–27529.

    Article  Google Scholar 

  18. Wang, G., Habib, U., Yan, Z., Gomes, N., Sui, Q., Wang, J., Zhang, L., and Wang, C., Highly efficient optical beam steering using an in-fiber diffraction grating for full duplex indoor optical wireless communication, J. Lightwave Technol., 2018, vol. 36, no. 19, pp. 4618–4625.

    Article  Google Scholar 

  19. Soloviev, V.S., Timoshenkov, S.P., Timoshenkov, A.S., Vinogradov, A.I., Kondratiev, N.M., and Raschepkina, N.A., Modeling the input of radiation into plane linear waveguides using diffraction gratings for a new technology for the manufacture of waveguide systems, Comput. Opt., 2020, vol. 44, no. 6, pp. 917–922.

    Article  Google Scholar 

  20. Shen, Z., Xiang, Z., Wang, Z., Shen, Y., and Zhang, B., Optical spanner for nanoparticle rotation with focused optical vortex generated through a Pancharatnam–Berry phase metalens, Appl. Opt., 2021, vol. 60, no. 16, pp. 4820–4826.

    Article  Google Scholar 

  21. Guo, Y., Zhang, S., and Luo, X., Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation, Light Sci. Appl., 2021, vol. 10, pp. 63.

    Article  Google Scholar 

  22. Jin, Z., Janoschka, D., Deng, J., Ge, L., Dreher, P., Frank, B., Hu, G., Ni, J., Yang, Y., Li, J., Yu, G., Lei, D., Li, G., Xiao, S., Mei, S., Giessen, H., Meyer zu Heringdorf, F., and Qiu, C.W., Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum, eLight, 2021, vol. 1, p. 5.

  23. Kotlyar, V.V., Stafeev, S.S., Nalimov, A.G., O’Faolain, L., and Kotlyar, M.V., A dual-functionality metalens to shape a circularly polarized optical vortex or a second-order cylindrical vector beam, Photonics Nanostrurct. Fundam. Appl. 2021, vol. 43, p. 100898.

    Article  Google Scholar 

  24. Volyar, A.V., Abramochkin, E.G., Egorov, Yu.A., Bretsko, M.V., and Akimova, Ya.E., Digital sorting of Hermite-Gauss beams, pp.mode spectra and topological charge of a perturbed Laguerre-Gauss beam, Comput. Opt., 2020, vol. 44, no. 4, pp. 501–509.

    Article  Google Scholar 

  25. Zeng, J., Li, L., Yang, X., and Gao, J., Generating and Separating Twisted Light by gradient–rotation Split-Ring Antenna Metasurfaces, Nano Lett., 2016, vol. 16, no. 5, pp. 3101–3108.

    Article  Google Scholar 

  26. Mehmood, M.Q., Mei, S., Hussain, S., Huang, K., Siew, S.Y., Zhang, L., Zhang, T., Ling, X., Liu, H., Teng, J., Danner, A., Zhang, S., and Qiu, C.-W., Visible-frequency metasurface for structuring and spatially multiplexing optical vortices, Adv. Mater., 2016, vol. 28, no. 13, pp. 2533–2539.

    Article  Google Scholar 

  27. Kotlyar, V.V., Nalimov, A.G., Stafeev, S.S., Hu, C., O’Faolain, L., Kotlyar, M.V., Gibson, D., and Song, S., Thin high numerical aperture metalens, Opt. Express, 2017, vol. 25, no. 7, pp. 8158–8167.

    Article  Google Scholar 

  28. Heckenberg, N.R., McDuff, R., Smith, C.P., and White, A.G., Generation of optical singularities by computer-generated holograms, Opt. Lett., 1992, vol. 17, no. 3, pp. 221–223.

    Article  Google Scholar 

  29. Lalanne, P., Lemercier-Lalanne, D., On the effective medium theory of subwavelength periodic structures, J. Mod. Opt. 1996, vol. 43, no. 10, pp. 2063–2085.

    Article  Google Scholar 

  30. Kotlyar, V.V. and Nalimov, A.G., A vector optical vortex generated and focused using a metalens, Comput. Opt., 2017, vol. 41, no. 5, pp. 645–654.

    Article  Google Scholar 

  31. Stafeev, S.S., O’Faolain, L., Kotlyar, V.V., and Nalimov, A.G., Tight focus of light using micropolarizer and microlens. Appl. Opt., 2015, vol. 54, no. 14, p. 4388.

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation, grant no. 23-12-00236.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nalimov.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nalimov, A., Kotlyar, V., Stafeev, S. et al. Metalens for Detection of a Topological Charge. Opt. Mem. Neural Networks 32 (Suppl 1), S187–S194 (2023). https://doi.org/10.3103/S1060992X23050144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X23050144

Keywords:

Navigation