Skip to main content
Log in

Synthesis and ultraviolet/aggregation-induced emission investigation of novel tetraphenylvinyl hydrazone derivatives: efficient multimodal chemosensors for fluoride ion

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Herein, three novel tetraphenylethylene hydrazone chemosensors TC12, SC16, and TC16 are prepared for the selective detection of F. Two NH and one C=N units are incorporated into the sensors for better colorimetric responses, whereas the tetraphenyl unit is in charge of the aggregation-induced emission effect. Among them, compounds SC16 and TC16 form stable gels with some organic solvents. All the tetrahydrofuran/H2O solutions of the three compounds exhibit aggregation-induced emission effect, whereby the fluorescence emission increases by varying degrees with the volume of poor solvent water. Moreover, good aggregation-induced emission effects are observed in the self-assembly of SC16 and TC16. As a sample chemosensor, TC12 in tetrahydrofuran responds to F selectively with high sensitivity, with the colorimetric and fluorometric detection limits of 8.25 × 10−7 mol·L−1 and 2.69 × 10−7 mol·L−1, respectively. The reversible gel-sol-gel phase transition and color changes indicate that both SC16-dimethyl sulfoxide and TC16-ethyl acetate gels specifically respond to F with good sensitivity. The detection results are well supported by ultraviolet-visible spectroscopy, fluorescent spectroscopy, and 1H nuclear magnetic resonance. More importantly, the driving forces of gelation are visually clarified through the single crystal X-ray analysis of compound TOMe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ning K, Zheng S, He Y, Hu Y, Hao S, Cui Q, Chen H. Removal of fluoride from aqueous solutions through Fe(III) modified water treatment residues. Journal of Cleaner Production, 2023, 382: 135374

    Article  CAS  Google Scholar 

  2. Kang H, Zhang D, Chen X, Zhao H, Yang D, Li Y, Bao M, Wang Z. Preparation of MOF/polypyrrole and flower-like MnO2 electrodes by electrodeposition: high-performance materials for hybrid capacitive deionization defluorination. Water Research, 2023, 229: 119441

    Article  CAS  PubMed  Google Scholar 

  3. Hao C, Wang Y, He K, Gui H. Seasonal distribution of deep groundwater fluoride, geochemical factors and ecological risk for irrigation in the Shendong mining area, China. Frontiers in Environmental Science, 2022, 10: 1024797

    Article  Google Scholar 

  4. Tipping W J, Wilson L T, Blaseio S K, Tomkinson N C O, Faulds K, Graham D. Ratiometric sensing of fluoride ions using Raman spectroscopy. Chemical Communications, 2020, 56(92): 14463–14466

    Article  CAS  PubMed  Google Scholar 

  5. Sahu S, Sikdar Y, Bag R, Maiti D K, Ceron-Carrasco J P, Goswami S. Visual detection of fluoride ion based on ICT mechanism. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2019, 213: 354–360

    Article  CAS  PubMed  Google Scholar 

  6. Katiyar P, Pandey N, Sahu K K. Biological approaches of fluoride remediation: potential for environmental clean-up. Environmental Science and Pollution Research International, 2020, 27(12): 13044–13055

    Article  CAS  PubMed  Google Scholar 

  7. Zhang L, Gao X, Chen X, Zhao M, Wu H, Liu Y. A smartphone integrated ratiometric fluorescent sensor for point-of-care testing of fluoride ions. Analytical and Bioanalytical Chemistry, 2022, 414(13): 3999–4009

    Article  CAS  PubMed  Google Scholar 

  8. Sasaki Y, Lyu X, Zhang Z, Minami T. A minimized fluorescent chemosensor array utilizing carboxylate-attached polythiophenes on a chip for metal ions detection. Frontiers of Chemical Science and Engineering, 2022, 16(1): 72–80

    Article  CAS  Google Scholar 

  9. Zhou L, Chen Y, Shao B, Cheng J, Li X. Recent advances of small-molecule fluorescent probes for detecting biological hydrogen sulfide. Frontiers of Chemical Science and Engineering, 2022, 16(1): 34–63

    Article  CAS  Google Scholar 

  10. Park S, Ju J, Lee Y J, Lee S Y. A hydrazide organogelator for fluoride sensing with hyperchromicity and gel-to-sol transition. RSC Advances, 2020, 10(24): 14243–14248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Razi S S, Gupta R C, Ali R, Dwivedi S K, Srivastava P, Misra A. A new D-π-A type intramolecular charge transfer Dyad system to detect F: anion induced CO2 sensing. Sensors and Actuators. B, Chemical, 2016, 236: 520–528

    Article  CAS  Google Scholar 

  12. Zhou Y, Wang X, Zhang W, Tang B, Li P. Recent advances in small molecule fluorescent probes for simultaneous imaging of two bioactive molecules in live cells and in vivo. Frontiers of Chemical Science and Engineering, 2022, 16(1): 4–33

    Article  CAS  Google Scholar 

  13. Panja S, Adams D J. Stimuli responsive dynamic transformations in supramolecular gels. Chemical Society Reviews, 2021, 50(8): 5165–5200

    Article  CAS  PubMed  Google Scholar 

  14. Huang Y, Yuan Y, Tu W, Zhang Y, Zhang M, Qu H. Preparation of efficient organogelators based on pyrazine-2,5-dicarboxylic acid showing room temperature mesophase. Tetrahedron, 2015, 71(21): 3221–3230

    Article  CAS  Google Scholar 

  15. Zhu M, Zhong M, Chen M, Huang S, Li Y, Cao F. A π-conjugated α-cyanostilbene dimer emitting strongly red fluorescence with a large Stokes’ shift of ca. 300 nm and used as a probe for selective detection of Cu2+. Optical Materials, 2022, 125: 112059

    Article  CAS  Google Scholar 

  16. Yadav E, Khatana A K, Sebastian S, Gupta M K. DAP derived fatty acid amide organogelators as novel carrier for drug incorporation and pH-responsive release. New Journal of Chemistry, 2021, 45(1): 415–422

    Article  CAS  Google Scholar 

  17. Sun H, Chuai J, Wei H, Zhang X, Yu H. Multi-functional organic gelator derived from phenyllactic acid for phenol removal and oil recovery. Journal of Hazardous Materials, 2019, 366: 46–53

    Article  CAS  PubMed  Google Scholar 

  18. Wang N, Yao H, Tao Q, Sun J, Ma H, Wang Y, Zhou C, Fan H, Shao H, Qin A, Su D, Wang C, Chong H. TPE based aggregation induced emission fluorescent sensors for viscosity of liquid and mechanical properties of hydrogel. Chinese Chemical Letters, 2022, 33(1): 252–256

    Article  Google Scholar 

  19. Li J, Wang J, Li H, Song N, Wang D, Tang B. Supramolecular materials based on AIE luminogens (AIEgens): construction and applications. Chemical Society Reviews, 2020, 49(4): 1144–1172

    Article  CAS  PubMed  Google Scholar 

  20. Chen Y, Lam J W Y, Kwok R T K, Liu B, Tang B Z. Aggregation-induced emission: fundamental understanding and future developments. Materials Horizons, 2019, 6(3): 428–433

    Article  CAS  Google Scholar 

  21. Wang H, Liu Q, Hu Y, Liu M, Huang X, Gao W, Wu H. A multiple stimuli-sensitive low-molecular-weight gel with an aggregate-induced emission effect for sol-gel transition detection. ChemistryOpen, 2018, 7(6): 457–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu X, Chen H, Shi X, Albouy P A, Guo J, Hu J, Li M. Liquid crystal gelators with photo-responsive and AIE properties. Materials Chemistry Frontiers, 2018, 2(12): 2245–2253

    Article  CAS  Google Scholar 

  23. Shao L, Fan S, Meng Y, Gan Y, Shao W, Wang Z, Chen D, Ouyang G. Design, synthesis, biological activities and 3D-QSAR studies of quinazolinone derivatives containing hydrazone structural units. New Journal of Chemistry, 2021, 45(10): 4626–4631

    Article  CAS  Google Scholar 

  24. Paruch K, Popiolek L, Biernasiuk A, Berecka-Rycerz A, Malm A, Gumieniczek A, Wujec M. Novel derivatives of 4-methyl-1,2,3-thiadiazole-5-carboxylic acid hydrazide: synthesis, lipophilicity, and in vitro antimicrobial activity screening. Applied Sciences, 2021, 11(3): 1180

    Article  CAS  Google Scholar 

  25. Jeong M J, Park J H, Lee C J, Chang J Y. Discotic liquid crystalline hydrazone compounds: synthesis and mesomorphic properties. Organic Letters, 2006, 8(11): 2221–2224

    Article  CAS  PubMed  Google Scholar 

  26. Oliveira W, Mezalira D Z, Westphal E. Acylhydrazones liquid crystals: effect of structure over thermal behaviour and molecular switching. Liquid Crystals, 2020, 48(1): 88–99

    Article  Google Scholar 

  27. Sgobbi L F, Pinho V D, Cabral M F, Burtoloso A C B, Machado S A S. Hydrazone molecules as mimics for acetylcholinesterase. A new route towards disposable biosensors for pesticides? Sensors and Actuators. B, Chemical, 2013, 182: 211–216

    Article  CAS  Google Scholar 

  28. Bai A, Zhang Y, Tian J, Huang Y, Yang J. Novel acylhydrazone based chemosensor: “on-off” fluorescent and chromogenic detection of F and Fe3+ with high selectivity and sensitivity. Tetrahedron, 2022, 120: 132900

    Article  CAS  Google Scholar 

  29. Huang Y, Li H, Li Z, Zhang Y, Cao W, Wang L, Liu S. Unusual C-I…O halogen bonding in triazole derivatives: gelation solvents at two extremes of polarity and formation of superorganogels. Langmuir, 2017, 33(1): 311–321

    Article  CAS  PubMed  Google Scholar 

  30. Yuan Y, Zhang R, Cheng X, Xu S, Liu B. A FRET probe with AIEgen as the energy quencher: dual signal turn-on for self-validated caspase detection. Chemical Science, 2016, 7(7): 4245–4250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu G, Tang Y, Ma Y, Xu A, Lin W. A new aggregation-induced emission fluorescent probe for rapid detection of nitroreductase and its application in living cells. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2018, 188: 197–201

    Article  CAS  PubMed  Google Scholar 

  32. Xu Y, Cao J, Li Q, Li J, He K, Shen T, Liu X, Yuan C, Zeng B, Dai L. Novel azobenzene-based amphiphilic copolymers: synthesis, self-assembly behavior and multiple-stimuli-responsive properties. RSC Advances, 2018, 8(29): 16103–16113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang Y, Tu W, Yuan Y, Fan D. Novel organogelators based on pyrazine-2,5-dicarboxylic acid derivatives and their mesomorphic behaviors. Tetrahedron, 2014, 70(6): 1274–1282

    Article  CAS  Google Scholar 

  34. Sinnokrot M O, Valeev E F, Sherrill C D. Estimates of the ab initio limit for pi-pi interactions: the benzene dimer. Journal of the American Chemical Society, 2002, 124(36): 10887–10893

    Article  CAS  PubMed  Google Scholar 

  35. Ray S, Das A. Studies on the π-π stacking features of imidazole units present in a series of 5-amino-1-alkylimidazole-4-carboxamides. Journal of Molecular Structure, 2015, 1089: 146–152

    Article  CAS  Google Scholar 

  36. Wang X, Cui W, Li B, Zhang X, Zhang Y, Huang Y. Supramolecular self-assembly of two-component systems comprising aromatic amides/Schiff base and tartaric acid. Frontiers of Chemical Science and Engineering, 2020, 14(6): 1112–1121

    Article  CAS  Google Scholar 

  37. Chow H, Wang G. Enhanced gelation property due to intramolecular hydrogen bonding in a new series of bis(amino acid)-functionalized pyridine-2,6-dicarboxamide organogelators. Tetrahedron, 2007, 63(31): 7407–7418

    Article  CAS  Google Scholar 

  38. Zhang H, Tao F, Cui Y, Xu Z. The aggregation induced fluorescence effect enhanced by a reasonable length of carbon chain. Journal of Molecular Liquids, 2020, 302: 112550

    Article  CAS  Google Scholar 

  39. Wang H, Shen X, Ge J, Deng Y, Ding F, Wang Z, Zhu W, Hu L, He J, Gu X. Rational design of AIE-based carbazole derivatives for lipid droplet-specific imaging in living cells. Chemicke Zvesti, 2023, 77(1): 563–569

    CAS  Google Scholar 

  40. Ge S, Li B, Meng X, Yan H, Yang M, Dong B, Lu Y. Aggregation-induced emission, multiple chromisms and self-organization of N-substituted-1,8-naphthalimides. Dyes and Pigments, 2018, 148: 147–153

    Article  CAS  Google Scholar 

  41. Shang H, Ding Z, Shen Y, Yang B, Liu M, Jiang S. Multi-color tunable circularly polarized luminescence in one single AIE system. Chemical Science, 2020, 11(8): 2169–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Choi Y, Lee S S, Jung J H. Unusual fluorescence and sol-gel transition properties of a pyridine-based polymeric gel formed via the hydrazone reaction. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2016, 4(41): 9646–9650

    Article  CAS  Google Scholar 

  43. Xu Y, Xue P, Xu D, Zhang X, Liu X, Zhou H, Jia J, Yang X, Wang F, Lu R. Multicolor fluorescent switches in gel systems controlled by alkoxyl chain and solvent. Organic & Biomolecular Chemistry, 2010, 8(19): 4289–4296

    Article  CAS  Google Scholar 

  44. Raju V, Kumar R S, Kumar S K A, Madhu G, Bothra S, Sahoo S K. A ninhydrin-thiosemicarbazone based highly selective and sensitive chromogenic sensor for Hg2+ and F ions. Journal of Chemical Sciences, 2020, 132(1): 89

    Article  CAS  Google Scholar 

  45. Panja S, Bhattacharya S, Ghosh K. Cholesterol-appended benzimidazolium salts: synthesis, aggregation, sensing, dye adsorption, and semiconducting properties. Langmuir, 2017, 33(33): 8277–8288

    Article  CAS  PubMed  Google Scholar 

  46. Anand T, Sivaraman G, Iniya M, Siva A, Chellappa D. Aminobenzohydrazide based colorimetric and ‘turn-on’ fluorescence chemosensor for selective recognition of fluoride. Analytica Chimica Acta, 2015, 876: 1–8

    Article  CAS  PubMed  Google Scholar 

  47. Liu Y, Li Z, Zhang H, Wang H, Li C. Colorimetric sensor and inverse fluorescent behavior of anions by calix[4]arene possessing imidazo[4,5-f]-1,10-phenanthroline groups and its Ru(II) complex. Supramolecular Chemistry, 2008, 20(4): 419–426

    Article  CAS  Google Scholar 

Download references

Acknowledgements This work was financially supported by the National Key Research and Development Program of China (Grant No. 2018YFA0903700)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaodong Huang.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Electronic Supplementary Material

11705_2023_2366_MOESM1_ESM.pdf

Synthesis and ultraviolet/aggregation-induced emission investigation of novel tetraphenylvinyl hydrazone derivatives: efficient multimodal chemosensors for fluoride ion

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, W., Shi, L., Liang, M. et al. Synthesis and ultraviolet/aggregation-induced emission investigation of novel tetraphenylvinyl hydrazone derivatives: efficient multimodal chemosensors for fluoride ion. Front. Chem. Sci. Eng. 17, 2061–2073 (2023). https://doi.org/10.1007/s11705-023-2366-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-023-2366-0

Keywords

Navigation