Skip to main content
Log in

Scalar and spinor quasi normal modes of a 2D dilatonic blackhole

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

External non-minimally coupled scalar and spinor field perturbations have been studied in a (1 + 1) dimensional dilatonic blackhole spacetime (Mandal et al. in Mod Phys Lett A 6:1685–1692. https://doi.org/10.1142/S0217732391001822, 1991; Witten in Phys Rev D 44:314–324. https://doi.org/10.1103/PhysRevD.44.314, 1991). Exact analytical expressions of the quasi-normal mode frequencies have been found for both the cases. In the scalar perturbations the quasi-normal mode frequencies turn out to be purely imaginary and negative. Furthermore we have found that the quasi-normal frequencies for Dirac field exhibit both real and imaginary part. The QNM frequencies decay monotonically with the overtone number under certain class of the blackhole parameters. The decay profile ensures the stability of the blackhole spacetime under these perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mandal, G., Sengupta, A.M., Wadia, S.R.: Classical solutions of two-dimensional string theory. Mod. Phys. Lett. A 6, 1685–1692 (1991). https://doi.org/10.1142/S0217732391001822

    Article  ADS  MATH  Google Scholar 

  2. Witten, E.: On string theory and black holes. Phys. Rev. D 44, 314–324 (1991). https://doi.org/10.1103/PhysRevD.44.314

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Kokkotas, K.D., Schmidt, B.G.: Quasinormal modes of stars and black holes. Living Rev. Rel. 2, 2 (1999). https://doi.org/10.12942/lrr-1999-2; arXiv:gr-qc/9909058

  4. Arun, K.G., et al.: New horizons for fundamental physics with LISA. Living Rev. Rel. 25(1), 4 (2022). https://doi.org/10.1007/s41114-022-00036-9

    Article  Google Scholar 

  5. Chakraborty, S., Chakravarti, K., Bose, S., SenGupta, S.: Signatures of extra dimensions in gravitational waves from black hole quasinormal modes. Phys. Rev. D 97(10), 104053 (2018). https://doi.org/10.1103/PhysRevD.97.104053

    Article  ADS  MathSciNet  Google Scholar 

  6. Kanti, P., Konoplya, R.A.: Quasi-normal modes of brane-localised standard model fields. Phys. Rev. D 73, 044002 (2006). https://doi.org/10.1103/PhysRevD.73.044002

    Article  ADS  MathSciNet  Google Scholar 

  7. Birmingham, D., Sachs, I., Solodukhin, S.N.: Conformal field theory interpretation of black hole quasinormal modes. Phys. Rev. Lett. 88, 151301 (2002). https://doi.org/10.1103/PhysRevLett.88.151301

    Article  ADS  MathSciNet  Google Scholar 

  8. Kovtun, P.K., Starinets, A.O.: Quasinormal modes and holography. Phys. Rev. D 72, 086009 (2005). https://doi.org/10.1103/PhysRevD.72.086009

    Article  ADS  Google Scholar 

  9. Seahra, S.S., Clarkson, C., Maartens, R.: Detecting extra dimensions with gravity wave spectroscopy: the black string brane-world. Phys. Rev. Lett. 94, 121302 (2005). https://doi.org/10.1103/PhysRevLett.94.121302

    Article  ADS  Google Scholar 

  10. Verlinde, E.P.: Emergent gravity and the dark universe. SciPost Phys. 2(3), 016 (2017). https://doi.org/10.21468/SciPostPhys.2.3.016

  11. Tuveri, M., Cadoni, M.: Galactic dynamics and long-range quantum gravity. Phys. Rev. D 100(2), 024029 (2019). https://doi.org/10.1103/PhysRevD.100.024029

    Article  ADS  MathSciNet  Google Scholar 

  12. Dvali, G.: Entropy Bound and Unitarity of Scattering Amplitudes. JHEP 03, 126 (2021). https://doi.org/10.1007/JHEP03(2021)126

  13. Dvali, G., Gomez, C.: Quantum Compositeness of Gravity: Black Holes, AdS and Inflation. JCAP 01, 023 (2014). https://doi.org/10.1088/1475-7516/2014/01/023

  14. Cadoni, M., Tuveri, M., Sanna, A.P.: Long-range quantum gravity. Symmetry 12(9), 1396 (2020). https://doi.org/10.3390/sym12091396

    Article  ADS  Google Scholar 

  15. Cadoni, M., Oi, M., Sanna, A.P.: Quasi-normal modes and microscopic description of 2D black holes. JHEP 01, 087 (2022). https://doi.org/10.1007/JHEP01(2022)087

  16. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge Monographs on Mathematical Physics. Cambridge University Press, New York (2023)

    Book  Google Scholar 

  17. Preskill, J.: Do black holes destroy information? In: International Symposium on Black Holes, Membranes, Wormholes and Superstrings (1992)

  18. Kettner, J., Kunstatter, G., Medved, A.J.M.: Quasinormal modes for single horizon black holes in generic 2-d dilaton gravity. Class. Quant. Grav. 21, 5317–5332 (2004) https://doi.org/10.1088/0264-9381/21/23/002; arXiv:gr-qc/0408042

  19. Bhattacharjee, S., Sarkar, S., Bhattacharyya, A.: Scalar perturbations of black holes in Jackiw-Teitelboim gravity. Phys. Rev. D 103(2), 024008 (2021) https://doi.org/10.1103/PhysRevD.103.024008; arXiv:2011.08179

  20. Grumiller, D., Kummer, W., Vassilevich, D.V.: Dilaton gravity in two-dimensions. Phys. Rept. 369, 327–430 (2002). https://doi.org/10.1016/S0370-1573(02)00267-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Mann, R.B., Shiekh, A., Tarasov, L.: Classical and quantum properties of two-dimensional black holes. Nucl. Phys. B 341(1), 134–154 (1990)

    Article  ADS  Google Scholar 

  22. Koley, R., Pal, S., Kar, S.: Geodesics and geodesic deviation in a two-dimensional black hole. Am. J. Phys. 71, 1037–1042 (2003) https://doi.org/10.1119/1.1566426; arXiv:gr-qc/0302065

  23. Fernando, S.: Greybody factors of charged dilaton black holes in 2 + 1 dimensions. Gen. Rel. Grav. 37, 461–481 (2005). https://doi.org/10.1007/s10714-005-0035-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Fernando, S.: Quasinormal modes of charged dilaton black holes in (2+1)-dimensions. Gen. Rel. Grav. 36, 71–82 (2004). https://doi.org/10.1023/B:GERG.0000006694.68399.c9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Chan, K.C.K., Mann, R.B.: Static charged black holes in (2+1)-dimensional dilaton gravity. Phys. Rev. D 50, 6385 (1994). https://doi.org/10.1103/PhysRevD.50.6385

  26. Sebastian, S., Kuriakose, V.C.: Dirac Quasinormal modes of MSW black holes. Mod. Phys. Lett. A 29(5), 1450019 (2014). https://doi.org/10.1142/S0217732314500199

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Lopez-Ortega, A., Vega-Acevedo, I.: Quasinormal frequencies of asymptotically flat two-dimensional black holes. Gen. Rel. Grav. 43, 2631–2647 (2011). https://doi.org/10.1007/s10714-011-1185-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Zelnikov, A.: Non-minimal scalar fields in 2D de Sitter and dilaton black holes. JHEP 07, 010 (2008). https://doi.org/10.1088/1126-6708/2008/07/010

    Article  ADS  MathSciNet  Google Scholar 

  29. Schutz, B.F., Will, C.M.: Black hole normal modes–A semianalytic approach. Astrophys. J. Lett. 291, 33–36 (1985). https://doi.org/10.1086/184453

    Article  ADS  Google Scholar 

  30. Abramowitz, M., Stegun, I.A., et al.: Handbook of Mathematical Functions. Dover, New York (1964)

    MATH  Google Scholar 

  31. Wang, Z.X., Guo, D.R.: Special Functions. World Scientific, Singapore (1989)

    Book  Google Scholar 

  32. Lopez-Ortega, A.: The Dirac equation in D-dimensional spherically symmetric spacetimes. Lat. Am. J. Phys. Educ. 3, 578 (2009)

    Google Scholar 

  33. Maggiore, M.: The Physical interpretation of the spectrum of black hole quasinormal modes. Phys. Rev. Lett. 100, 141301 (2008). https://doi.org/10.1103/PhysRevLett.100.141301; arXiv:0711.3145

Download references

Acknowledgements

P. Gayen acknowledges the University Grants Commission (UGC), India for providing financial support through a fellowship with ID: 191620137660.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this work. In the manuscript P.G. included the equations, figures, tables and wrote the first draft. R.K. modified and structured the texts in the manuscript. Both authors have checked and approved the manuscript.

Corresponding author

Correspondence to Ratna Koley.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gayen, P., Koley, R. Scalar and spinor quasi normal modes of a 2D dilatonic blackhole. Gen Relativ Gravit 55, 129 (2023). https://doi.org/10.1007/s10714-023-03178-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03178-5

Keywords

Navigation