Skip to main content
Log in

An \(L^1\)-theory for a nonlinear temporal periodic problem involving p(x)-growth structure with a strong dependence on gradients

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We investigate the existence of a time-periodic solution to a nonlinear evolution equation involving p(x)-growth conditions with irregular data. We tackle our problem in a suitable functional setting by considering the so-called variable exponent Lebesgue and Sobolev spaces. By assuming that the data belongs only to \(L^1\), we prove the existence of a renormalized time-periodic solution to the studied model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. K. Adimurthi, S. S. Byun, J. Oh, Interior and boundary higher integrability of very weak solutions for quasilinear parabolic equations with variable exponents. Nonlinear Analysis, 194, (2020), 111370.

    Article  MathSciNet  Google Scholar 

  2. G. Akagi, K. Matsuura, Well-posedness and large-time behaviors of solutions for a parabolic equation involving p(x)-Laplacian. ”The Eighth International Conference on Dynamical Systems and Differential Equations,” a supplement volume of Discrete Contin. Dyn. Syst, (2011), 22–31.

  3. N. E. Alaa and M. Pierre; Weak solutions for some quasi-linear elliptic equations with data measures, SIAM J. Math. Anal. 24 (1993), 23–35.

    Article  MathSciNet  Google Scholar 

  4. H. Alaa, N. E. Alaa, A. Charkaoui, Time periodic solutions for strongly nonlinear parabolic systems with p(x) growth conditions. J Ellipti Parabol Equ 7, 815–839 (2021).

    Article  MathSciNet  Google Scholar 

  5. H. Alaa, N. E. Alaa, A. Bouchriti, et al. An improved nonlinear anisotropic PDE with p(x)-growth conditions applied to image restoration and enhancement. Authorea. July 07, (2022) https://doi.org/10.22541/au.165717367.72990650/v1

  6. W. Allegretto, C. Mocenni, A. Vicino, Periodic solutions in modelling lagoon ecological interactions, J. Math. Biol. 51, (2005), 367–388.

    Article  MathSciNet  Google Scholar 

  7. W. Allegretto, D. Papini, Analysis of a lagoon ecological model with anoxic crises and impulsive harvesting, in: Mathematical Methods and Modeling of Biophysical Phenomena, Math. Comput. Modelling 47 (7-8), (2008), 675-686.

  8. S. Antontsev, S. Shmarev, Evolution PDEs with Nonstandard Growth Conditions: Existence, Uniqueness, Localization, Blow-up, Atlantis Studies in Differential Equations, vol. 4, Atlantis Press, Paris, 2015.

  9. M. Bendahmane, P. Wittbold and A. Zimmermann, Renormalized solutions for a nonlinear parabolic equation with variable exponents and\(L^{1}\)-data, J. Differential Equations, (2010), 1483–1515.

  10. M. Bendahmane, M. Langlais, A reaction-diffusion system with cross-diffusion modeling the spread of an epidemic disease. Journal of Evolution Equations, 10, (2010), 883–904.

    Article  MathSciNet  Google Scholar 

  11. M. Bendahmane, M. Saad, Mathematical analysis and pattern formation for a partial immune system modeling the spread of an epidemic disease, Acta Applicandae Mathematicae, 115 (2011), 17–42.

    Article  MathSciNet  Google Scholar 

  12. P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vazquez; An\(L^{1}\)theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci, (1995), 241–273.

  13. D. Blanchard, F. Murat and H. Redwane; Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems, J. Differential Equations 177, (2001), 331–374:

    Article  MathSciNet  Google Scholar 

  14. L. Boccardo, F. Murat, J. P. Puel, Existence results for some quasilinear parabolic equations. Nonlinear Analysis: Theory, Methods & Applications, 13(4), (1989), 373–392.

    Article  MathSciNet  Google Scholar 

  15. A. Charkaoui, N. E. Alaa, Existence and uniqueness of renormalized periodic solution to a nonlinear parabolic problem with variable exponent and\(L^1\)data. Journal of Mathematical Analysis and Applications, 506(2), (2022), 125674.

  16. A. Charkaoui, H. Fahim, N. E. Alaa, Nonlinear parabolic equation having nonstandard growth condition with respect to the gradient and variable exponent, Opuscula Math. 41, no 1, (2021), 25–53.

    Article  MathSciNet  Google Scholar 

  17. A. Charkaoui, N. E. Alaa, Weak Periodic Solution for Semilinear Parabolic Problem with Singular Nonlinearities and\(L^{1}\)Data. Mediterr. J. Math. 17, 108, (2020).

  18. A. Charkaoui, L. Taourirte, N. E. Alaa, Periodic parabolic equation involving singular nonlinearity with variable exponent. Ricerche mat (2021). https://doi.org/10.1007/s11587-021-00609-w.

    Article  Google Scholar 

  19. A. Charkaoui, N. E. Alaa, Nonnegative weak solution for a periodic parabolic equation with bounded Radon measure. Rendiconti del Circolo Matematico di Palermo Series 2, 71(1), (2022), 459–467.

  20. Y. Chen, S. Levine and M. Rao; Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math, (2006), 1383–1406.

  21. A. Dall’Aglio, L. Orsina, Nonlinear parabolic equations with natural growth conditions and\(L^1\)data. Nonlinear Analysis: Theory, Methods & Applications, 27(1), (1996), 59–73.

  22. J. Deuel and P. Hess; Nonlinear parabolic boundary value problems with upper and lower solutions, Israel Journal of Mathematics, 29 (1978), 1–29.

    Article  MathSciNet  Google Scholar 

  23. E. DiBenedetto, Real analysis. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Boston Inc.: Boston, MA, (2002).

  24. L. Diening, P. Harjulehto, P. Hästö and M. Ružička, Lebesgue and Sobolev spaces with variable exponents, volume 2017 of Lecture Notes in Mathematics. Springer, Heidelberg, 2011.

  25. R.J. DiPerna and P.L. Lions; On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. Math, 2 (1989), 321–366.

    Article  MathSciNet  Google Scholar 

  26. H. Fahim, A. Charkaoui, N. E. Alaa, Parabolic systems driven by general differential operators with variable exponents and strong nonlinearities with respect to the gradient. J Elliptic Parabol Equ 7, (2021), 199–219.

    Article  MathSciNet  Google Scholar 

  27. G. Fragnelli, Positive periodic solutions for a system of anisotropic parabolic equations, J. Math. Anal. Appl. 367, (2010) 204–228.

    Article  MathSciNet  Google Scholar 

  28. J. Giacomoni, V. Rădulescu and G. Warnault; Quasilinear parabolic problem with variable exponent: Qualitative analysis and stabilization, Communications in Contemporary Mathematics, 20, (2018)

  29. T. C. Halsey, Electrorheological fluids, Science 258 (1992), 761–766.

    Article  Google Scholar 

  30. E. Henriques, The porous medium equation with variable exponent revisited. Journal of Evolution Equations, 21, (2021), 1495–1511.

    Article  MathSciNet  Google Scholar 

  31. P. Hess, Periodic-Parabolic Boundary Value Problem and Positivity, Pitman Res. Notes Math Ser. 247. New York: Longman Scientifc and Technical, 1991.

  32. T. Klimsiak, A. Rozkosz, Obstacle problem for semilinear parabolic equations with measure data. Journal of Evolution Equations, 15, (2015), 457–491.

    Article  MathSciNet  Google Scholar 

  33. R. Landes, On the existence of weak solutions for quasilinear parabolic initial-boundary value problems, Proc. Roy. Soc. Edinburgh Sect. A 89(3-4)(1981) 217–237.

    Article  MathSciNet  Google Scholar 

  34. Z. Li, W. Gao; Existence of renormalized solutions to a nonlinear parabolic equation in\(L^1\)setting with nonstandard growth condition and gradient term, Math. Methods Appl. Sci, 38 (14) (2015) 3043–3062.

  35. J. L. Lions, Quelques méthodes de résolution de problèmes aux limites non linéaires, Dunod, (1969)

  36. M. Mihăilescu, V. Rădulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. A 462 (2006) 2073, 2625–2641.

    Article  MathSciNet  Google Scholar 

  37. A. Mokrane, Existence of bounded solutions of some nonlinear parabolic equations. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 107(3–4), (1987), 313–326.

    Article  MathSciNet  Google Scholar 

  38. M. Pierre, G. Rolland, Global existence for a class of quadratic reaction-diffusion systems with nonlinear diffusions and\(L^1\)initial data. Nonlinear Analysis, 138, 369–387.

  39. M. Pierre, Weak solutions and supersolutions in\(L^1\)for reaction-diffusion systems. Nonlinear Evolution Equations and Related Topics. Birkhäuser, Basel, 2003. 153–168.

  40. A. Porretta, Existence Results for Nonlinear Parabolic Equations via Strong Convergence of Truncations, Annali di Matematica pura and applicata, (1999) 143–172.

  41. V. Rădulescu and D.D. Repovs̆; Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, CRC Press Taylor and Francis Group, (2015)

  42. V. Rădulescu, Nonlinear elliptic equations with variable exponent: Old and new, Nonlinear Anal. 121 (2015), 336–369.

    Article  MathSciNet  Google Scholar 

  43. K. Rajagopal; Mathematical modelling of electrorheological fluids, Cont. Mech. Term, (2001), 59–78.

  44. Ruzicka, Michael; Electrorheological fluids: modeling and mathematical theory, Springer Science & Business Media, (2000).

  45. L. Shangerganesh, K. Balachandran, Solvability of reaction-diffusion model with variable exponents, Math. Methods Appl. Sci. 37. no. 10, (2014), 1436–1448.

  46. J. Simon; Compact sets in the space \(L^{p}(0, T ; B)\), Ann. Mat. Pura Appl, 146 (1987), 65–96.

  47. I. I. Skrypnik, M. V. Voitovych, On the continuity of solutions of quasilinear parabolic equations with generalized Orlicz growth under non-logarithmic conditions. Annali di Matematica Pura ed Applicata, (2021), 1–36.

  48. K. Teng, C. Zhang, S. Zhou, Renormalized and entropy solutions for the fractional\(p\)-Laplacian evolution equations, Journal of Evolution Equations, 19, (2019), 559–584.

  49. A. S. Tersenov, A. S. Tersenov, Existence results for anisotropic quasilinear parabolic equations with time-dependent exponents and gradient term. Journal of Mathematical Analysis and Applications, 480(1), (2019), 123386.

    Article  MathSciNet  Google Scholar 

  50. C. Zhang and S. Zhou; Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and\(L^{1}\)data, J. Differential Equations, 248, (2010) 1376–1400.

  51. V.V. Zhikov, On some variational problems, Russ. J. Math. Phys. 5 (1997) 105–116.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahim Charkaoui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charkaoui, A., Alaa, N.E. An \(L^1\)-theory for a nonlinear temporal periodic problem involving p(x)-growth structure with a strong dependence on gradients. J. Evol. Equ. 23, 73 (2023). https://doi.org/10.1007/s00028-023-00924-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00028-023-00924-9

Keywords

Mathematics Subject Classification

Navigation