Skip to main content
Log in

Coherent States of the \(p\)-Adic Heisenberg Group and Entropic Uncertainty Relations

  • Research Articles
  • Published:
p-Adic Numbers, Ultrametric Analysis and Applications Aims and scope Submit manuscript

Abstract

Properties of coherent states for the Heisenberg group over a field of \(p\)-adic numbers are investigated. It turns out that coherent states form an orthonormal basis. The family of all such bases is parametrized by a set of self-dual lattices in the phase space. The Wehrl entropy \(S_W\) is considered and its properties are investigated. In particular, it is proved that \(S_W\geq 0\) and vanishes only on coherent states. For a pair of different bases of coherent states, an entropic uncertainty relation is obtained. It is shown that the lower bound for the sum of the corresponding Wehrl entropies is given by the distance between the lattices. The proof uses the fact that the bases of coherent states corresponding to a pair of lattices are mutually unbiased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. M. Perelomov, “Coherent states for arbitrary Lie group,” Commun. Math. Phys. 26, 222—236 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Wehrl, “On the relation between classical and quantum-mechanical entropy,” Rep. Math. Phys. 16 (3), 353–358 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  3. E. H. Lieb, “Proof of an entropy conjecture of Wehrl,” Commun. Math. Phys. 62, 35–41 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  4. E. Carlen, “Some integral identities and inequalities for entire functions and their application to the coherent state transform,” J. Funct. Anal. 97, 231–249 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  5. E. H. Lieb and J. P. Solovej, “Proof of an entropy conjecture for Bloch coherent spin states and its generalizations,” Acta Math. 212 (2), 379–398 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  6. V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, \(p\)-Adic Analysis and Mathematical Physics (World Scientific, 1994).

    Book  MATH  Google Scholar 

  7. B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich and E. I.Zelenov, “\(p\)-Adic mathematical physics: The first 30 years,” \(p\)-Adic Num. Ultrametr. Anal. Appl. 9, 87–121 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  8. I. I. Hirschman, Jr., “A note on entropy,” Amer. J. Math. 79 (1), 152–156 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  9. I. Bialynicki-Birula and J. Mycielski, “Uncertainty relations for information entropy in wave mechanics,” Commun. Math. Phys. 44, 129–132 (1975).

    Article  MathSciNet  Google Scholar 

  10. H. Maassen and J. B. M. Uffink, “Generalized entropic uncertainty relations,” Phys. Rev. Lett. 60, 1103–1106 (1988).

    Article  MathSciNet  Google Scholar 

  11. K. Kraus, “Complementary observables and uncertainty relations,” Phys. Rev. D 35 (10), 3070–3075 (1987).

    Article  MathSciNet  Google Scholar 

  12. F. A. Berezin, “The general concept of quantization,” Commun. Math. Phys. 40, 153 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Wehner and A. Winter, “Entropic uncertainty relations – a survey,” New J. Phys. 12, 025009 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Garrett, Buildings and Classical Groups (Chapman & Hall, 1997).

    Book  MATH  Google Scholar 

  15. E. I. Zelenov, “\(p\)-Adic quantum mechanics and coherent states.,” Theor. Math. Phys. 86 (2), 143–151 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  16. R. L. Frank and E. H. Lieb, “Entropy and uncertainty principle,” Ann. Henri Poincare 13, 1711–1717 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  17. E. I. Zelenov, “\(p\)-Adic model of quantum mechanics and quantum channels,” Proc. Steklov Inst. Math. 285, 132–144 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. S. Holevo, Quantum Systems, Channels, Information. A Mathematical Introduction (De Gruyter, 2012).

    Book  MATH  Google Scholar 

  19. M. A. Ballester and S. Wehner, “Entropic uncertainty relations and locking: Tight bounds for mutually unbiased bases,” Phys. Rev. A 75, 022319 (2007).

    Article  Google Scholar 

  20. E. I. Zelenov, “On geometry of \(p\)-adic coherent states and mutually unbiased bases,” Entropy 25 (6), 902 (2023).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Zelenov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelenov, E. Coherent States of the \(p\)-Adic Heisenberg Group and Entropic Uncertainty Relations. P-Adic Num Ultrametr Anal Appl 15, 195–203 (2023). https://doi.org/10.1134/S2070046623030032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070046623030032

Keywords

Navigation