Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

Pan-cancer Analysis Identifies AIMP2 as a Potential Biomarker for Breast Cancer

Author(s): Jie Qiu, Tao Zhou, Danhong Wang, Weimin Hong, Da Qian*, Xuli Meng* and Xiaozhen Liu*

Volume 24, Issue 5, 2023

Published on: 25 October, 2023

Page: [307 - 329] Pages: 23

DOI: 10.2174/0113892029255941231014142050

Price: $65

Abstract

Introduction: Aminoacyl tRNA synthetase complex interacting with multifunctional protein 2 (AIMP2) is a significant regulator of cell proliferation and apoptosis. Despite its abnormal expression in various tumor types, the specific functions and effects of AIMP2 on tumor immune cell infiltration, proliferation, and migration remain unclear.

Materials and Methods: To assess AIMP2's role in tumor immunity, we conducted a pan-cancer multi-database analysis using the Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Cancer Cell Lines Encyclopedia (CCLE) datasets, examining expression levels, prognosis, tumor progression, and immune microenvironment. Additionally, we investigated AIMP2's impact on breast cancer (BRCA) proliferation and migration using cell counting kit 8 (CCK-8) assay, transwell assays, and western blot analysis.

Results: Our findings revealed that AIMP2 was overexpressed in 24 tumor tissue types compared to normal tissue and was associated with four tumor stages. Survival analysis indicated that AIMP2 expression was strongly correlated with overall survival (OS) in certain cancer patients, with high AIMP2 expression linked to poorer prognosis in five cancer types.

Conclusion: Finally, siRNA-mediated AIMP2 knockdown inhibited BRCA cell proliferation and migration in vitro. In conclusion, our pan-cancer analysis suggests that AIMP2 may play a crucial role in tumor immunity and could serve as a potential prognostic marker, particularly in BRCA.

Keywords: AIMP2, biomarker, breast cancer, immune microenvironment, pan-cancer, multifunctional protein 2.

Graphical Abstract
[1]
Ku, J.; Kim, R.; Kim, D.; Kim, D.; Song, S.; Lee, K.; Lee, N.; Kim, M.; Yoon, S.S.; Kwon, N.H.; Kim, S.; Kim, Y.; Koh, Y. Single-cell analysis of AIMP2 splice variants informs on drug sensitivity and prognosis in hematologic cancer. Commun. Biol., 2020, 3(1), 630.
[http://dx.doi.org/10.1038/s42003-020-01353-x] [PMID: 33128014]
[2]
Kaminska, M.; Havrylenko, S.; Decottignies, P.; Gillet, S.; Maréchal, P.L.; Negrutskii, B.; Mirande, M. Dissection of the structural organization of the aminoacyl-tRNA synthetase complex. J. Biol. Chem., 2009, 284(10), 6053-6060.
[http://dx.doi.org/10.1074/jbc.M809636200] [PMID: 19131329]
[3]
Lee, S.W.; Cho, B.H.; Park, S.G.; Kim, S. Aminoacyl-tRNA synthetase complexes: Beyond translation. J. Cell Sci., 2004, 117(17), 3725-3734.
[http://dx.doi.org/10.1242/jcs.01342] [PMID: 15286174]
[4]
Park, S.G.; Ewalt, K.L.; Kim, S. Functional expansion of aminoacyl-tRNA synthetases and their interacting factors: New perspectives on housekeepers. Trends Biochem. Sci., 2005, 30(10), 569-574.
[http://dx.doi.org/10.1016/j.tibs.2005.08.004] [PMID: 16125937]
[5]
Han, J.M.; Park, B.J.; Park, S.G.; Oh, Y.S.; Choi, S.J.; Lee, S.W.; Hwang, S.K.; Chang, S.H.; Cho, M.H.; Kim, S. AIMP2/p38, the scaffold for the multi-tRNA synthetase complex, responds to genotoxic stresses via p53. Proc. Natl. Acad. Sci. USA, 2008, 105(32), 11206-11211.
[http://dx.doi.org/10.1073/pnas.0800297105] [PMID: 18695251]
[6]
Cookson, M.R. The biochemistry of Parkinson’s disease. Annu. Rev. Biochem., 2005, 74(1), 29-52.
[http://dx.doi.org/10.1146/annurev.biochem.74.082803.133400] [PMID: 15952880]
[7]
Ko, H.S.; von Coelln, R.; Sriram, S.R.; Kim, S.W.; Chung, K.K.K.; Pletnikova, O.; Troncoso, J.; Johnson, B.; Saffary, R.; Goh, E.L.; Song, H.; Park, B.J.; Kim, M.J.; Kim, S.; Dawson, V.L.; Dawson, T.M. Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-1, leads to catecholaminergic cell death. J. Neurosci., 2005, 25(35), 7968-7978.
[http://dx.doi.org/10.1523/JNEUROSCI.2172-05.2005] [PMID: 16135753]
[8]
Choi, J.W.; Kim, D.G.; Park, M.C.; Um, J.Y.; Han, J.M.; Park, S.G.; Choi, E.C.; Kim, S. AIMP2 promotes TNFα-dependent apoptosis via ubiquitin-mediated degradation of TRAF2. J. Cell Sci., 2009, 122(15), 2710-2715.
[http://dx.doi.org/10.1242/jcs.049767] [PMID: 19584093]
[9]
Yum, M.K.; Kang, J.S.; Lee, A.E.; Jo, Y.W.; Seo, J.Y.; Kim, H.A.; Kim, Y.Y.; Seong, J.; Lee, E.B.; Kim, J.H.; Han, J.M.; Kim, S.; Kong, Y.Y. AIMP2 controls intestinal stem cell compartments and tumorigenesis by modulating wnt/β-catenin signaling. Cancer Res., 2016, 76(15), 4559-4568.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3357] [PMID: 27262173]
[10]
Choi, J.W.; Um, J.Y.; Kundu, J.K.; Surh, Y.J.; Kim, S. Multidirectional tumor-suppressive activity of AIMP2/p38 and the enhanced susceptibility of AIMP2 heterozygous mice to carcinogenesis. Carcinogenesis, 2009, 30(9), 1638-1644.
[http://dx.doi.org/10.1093/carcin/bgp170] [PMID: 19622630]
[11]
Kim, D.G.; Lee, J.Y.; Lee, J.H.; Cho, H.Y.; Kang, B.S.; Jang, S.Y.; Kim, M.H.; Guo, M.; Han, J.M.; Kim, S.J.; Kim, S. Oncogenic mutation of AIMP2/p38 inhibits its tumor-suppressive interaction with smurf2. Cancer Res., 2016, 76(11), 3422-3436.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3255] [PMID: 27197155]
[12]
Blum, A.; Wang, P.; Zenklusen, J.C. SnapShot: TCGA-analyzed tumors. Cell, 2018, 173(2), 530.
[http://dx.doi.org/10.1016/j.cell.2018.03.059] [PMID: 29625059]
[13]
The Genotype-Tissue Expression (GTEx) project Nat. Genet., 2013, 45(6), 580-585.
[http://dx.doi.org/10.1038/ng.2653] [PMID: 23715323]
[14]
Nusinow, D.P.; Szpyt, J.; Ghandi, M.; Rose, C.M.; McDonald, E.R., III; Kalocsay, M.; Jané-Valbuena, J.; Gelfand, E.; Schweppe, D.K.; Jedrychowski, M.; Golji, J.; Porter, D.A.; Rejtar, T.; Wang, Y.K.; Kryukov, G.V.; Stegmeier, F.; Erickson, B.K.; Garraway, L.A.; Sellers, W.R.; Gygi, S.P. Quantitative proteomics of the cancer cell line encyclopedia. Cell, 2020, 180(2), 387-402.e16.
[http://dx.doi.org/10.1016/j.cell.2019.12.023] [PMID: 31978347]
[15]
Goldman, M.J.; Craft, B.; Hastie, M. Repečka, K.; McDade, F.; Kamath, A.; Banerjee, A.; Luo, Y.; Rogers, D.; Brooks, A.N.; Zhu, J.; Haussler, D. Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol., 2020, 38(6), 675-678.
[http://dx.doi.org/10.1038/s41587-020-0546-8] [PMID: 32444850]
[16]
Ru, B.; Wong, C.N.; Tong, Y.; Zhong, J.Y.; Zhong, S.S.W.; Wu, W.C.; Chu, K.C.; Wong, C.Y.; Lau, C.Y.; Chen, I.; Chan, N.W.; Zhang, J. TISIDB: An integrated repository portal for tumor–immune system interactions. Bioinformatics, 2019, 35(20), 4200-4202.
[http://dx.doi.org/10.1093/bioinformatics/btz210] [PMID: 30903160]
[17]
Reinhold, W.C.; Sunshine, M.; Liu, H.; Varma, S.; Kohn, K.W.; Morris, J.; Doroshow, J.; Pommier, Y. CellMiner: A web-based suite of genomic and pharmacologic tools to explore transcript and drug patterns in the NCI-60 cell line set. Cancer Res., 2012, 72(14), 3499-3511.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1370] [PMID: 22802077]
[18]
Shankavaram, U.T.; Varma, S.; Kane, D.; Sunshine, M.; Chary, K.K.; Reinhold, W.C.; Pommier, Y.; Weinstein, J.N. CellMiner: A relational database and query tool for the NCI-60 cancer cell lines. BMC Genomics, 2009, 10(1), 277.
[http://dx.doi.org/10.1186/1471-2164-10-277] [PMID: 19549304]
[19]
Xie, M.; Wang, F.; Chen, B.; Wu, Z.; Chen, C.; Xu, J. Systematic pan-cancer analysis identifies SLC35C1 as an immunological and prognostic biomarker. Sci. Rep., 2023, 13(1), 5331.
[http://dx.doi.org/10.1038/s41598-023-32375-0] [PMID: 37005450]
[20]
Liberzon, A.; Birger, C.; Thorvaldsdóttir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst., 2015, 1(6), 417-425.
[http://dx.doi.org/10.1016/j.cels.2015.12.004] [PMID: 26771021]
[21]
Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; Mesirov, J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci., 2005, 102(43), 15545-15550.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[22]
Cheng, X.; Wang, X.; Nie, K.; Cheng, L.; Zhang, Z.; Hu, Y.; Peng, W. Systematic pan-cancer analysis identifies TREM2 as an immunological and prognostic biomarker. Front. Immunol., 2021, 12, 646523.
[http://dx.doi.org/10.3389/fimmu.2021.646523] [PMID: 33679809]
[23]
Bonneville, R; Krook, MA; Kautto, EA Landscape of microsatellite instability across 39 cancer types. JCO Precis Oncol, 2017, 2017 PO.17.00073
[24]
Langfelder, P.; Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9(1), 559.
[http://dx.doi.org/10.1186/1471-2105-9-559] [PMID: 19114008]
[25]
Midiri, F.; Vernuccio, F.; Purpura, P.; Alongi, P.; Bartolotta, T.V. Multiparametric MRI and radiomics in prostate cancer: A review of the current literature. Diagnostics, 2021, 11(10), 1829.
[http://dx.doi.org/10.3390/diagnostics11101829] [PMID: 34679527]
[26]
Kim, S.S.; Hur, S.Y.; Kim, Y.R.; Yoo, N.J.; Lee, S.H. Expression of AIMP1, 2 and 3, the scaffolds for the multi-tRNA synthetase complex, is downregulated in gastric and colorectal cancer. Tumori, 2011, 97(3), 380-385.
[http://dx.doi.org/10.1177/030089161109700321] [PMID: 21789020]
[27]
Fumet, J.D.; Truntzer, C.; Yarchoan, M.; Ghiringhelli, F. Tumour mutational burden as a biomarker for immunotherapy: Current data and emerging concepts. Eur. J. Cancer, 2020, 131, 40-50.
[http://dx.doi.org/10.1016/j.ejca.2020.02.038] [PMID: 32278982]
[28]
Steuer, C.E.; Ramalingam, S.S. Tumor mutation burden: Leading immunotherapy to the era of precision medicine? J. Clin. Oncol., 2018, 36(7), 631-632.
[http://dx.doi.org/10.1200/JCO.2017.76.8770] [PMID: 29337637]
[29]
Lee, D.W.; Han, S.W.; Bae, J.M.; Jang, H.; Han, H.; Kim, H.; Bang, D.; Jeong, S.Y.; Park, K.J.; Kang, G.H.; Kim, T.Y. Tumor mutation burden and prognosis in patients with colorectal cancer treated with adjuvant fluoropyrimidine and oxaliplatin. Clin. Cancer Res., 2019, 25(20), 6141-6147.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-1105] [PMID: 31285374]
[30]
Devarakonda, S.; Rotolo, F.; Tsao, M.S.; Lanc, I.; Brambilla, E.; Masood, A.; Olaussen, K.A.; Fulton, R.; Sakashita, S.; McLeer-Florin, A.; Ding, K.; Le Teuff, G.; Shepherd, F.A.; Pignon, J.P.; Graziano, S.L.; Kratzke, R.; Soria, J.C.; Seymour, L.; Govindan, R.; Michiels, S. Tumor mutation burden as a biomarker in resected non–small-cell lung cancer. J. Clin. Oncol., 2018, 36(30), 2995-3006.
[http://dx.doi.org/10.1200/JCO.2018.78.1963] [PMID: 30106638]
[31]
Samstein, R.M.; Lee, C.H.; Shoushtari, A.N.; Hellmann, M.D.; Shen, R.; Janjigian, Y.Y.; Barron, D.A.; Zehir, A.; Jordan, E.J.; Omuro, A.; Kaley, T.J.; Kendall, S.M.; Motzer, R.J.; Hakimi, A.A.; Voss, M.H.; Russo, P.; Rosenberg, J.; Iyer, G.; Bochner, B.H.; Bajorin, D.F.; Al-Ahmadie, H.A.; Chaft, J.E.; Rudin, C.M.; Riely, G.J.; Baxi, S.; Ho, A.L.; Wong, R.J.; Pfister, D.G.; Wolchok, J.D.; Barker, C.A.; Gutin, P.H.; Brennan, C.W.; Tabar, V.; Mellinghoff, I.K.; DeAngelis, L.M.; Ariyan, C.E.; Lee, N.; Tap, W.D.; Gounder, M.M.; D’Angelo, S.P.; Saltz, L.; Stadler, Z.K.; Scher, H.I.; Baselga, J.; Razavi, P.; Klebanoff, C.A.; Yaeger, R.; Segal, N.H.; Ku, G.Y.; DeMatteo, R.P.; Ladanyi, M.; Rizvi, N.A.; Berger, M.F.; Riaz, N.; Solit, D.B.; Chan, T.A.; Morris, L.G.T. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet., 2019, 51(2), 202-206.
[http://dx.doi.org/10.1038/s41588-018-0312-8] [PMID: 30643254]
[32]
Boland, C.R.; Goel, A. Microsatellite instability in colorectal cancer. Gastroenterology, 2010, 138(6), 2073-2087.e3.
[http://dx.doi.org/10.1053/j.gastro.2009.12.064] [PMID: 20420947]
[33]
Gryfe, R.; Kim, H.; Hsieh, E.T.K.; Aronson, M.D.; Holowaty, E.J.; Bull, S.B.; Redston, M.; Gallinger, S. Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N. Engl. J. Med., 2000, 342(2), 69-77.
[http://dx.doi.org/10.1056/NEJM200001133420201] [PMID: 10631274]
[34]
Wu, T.; Dai, Y. Tumor microenvironment and therapeutic response. Cancer Lett., 2017, 387, 61-68.
[http://dx.doi.org/10.1016/j.canlet.2016.01.043] [PMID: 26845449]
[35]
Lei, X.; Lei, Y.; Li, J.K.; Du, W.X.; Li, R.G.; Yang, J.; Li, J.; Li, F.; Tan, H.B. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Lett., 2020, 470, 126-133.
[http://dx.doi.org/10.1016/j.canlet.2019.11.009] [PMID: 31730903]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy