Skip to main content
Log in

The Nature of the Emission Spectrum of NGC 7793 P13: Testing the Supercritical Accretion Disk Wind Model

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

The optical spectra of ultraluminous X-ray sources (ULXs) show signs of powerful outflows of matter. These outflows are responsible for the formation of a significant portion of optical and ultraviolet emission in ULXs and can either be stellar winds of the donor stars or optically thick outflows (winds) from the surface of supercritical accretion disks. In the latter scenario the outflows are still expected to be similar to stellar winds of massive stars, which allows one to use the same methods for their study based on a comparison of the observed spectra with those simulated within the framework of non-LTE extended atmosphere models. In this paper, we simulate the optical spectrum of the ultraluminous X-ray pulsar NGC 7793 P13, assuming that its emission part is produced in the wind of the supercritical accretion disk. The estimated mass loss rate is about \(1.4\times 10^{-5}M_{\odot}\) yr\({}^{-1}\). We consider the positive and negative aspects of the model and also discuss the applicability of the concept of supercritical disk winds to NGC 7793 P13 and to another well-known ultraluminous X-ray pulsar, NGC 300 ULX-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. Note that the red spectra of NGC 7793 P13 have not been published before.

  2. By photosphere we mean the surface corresponding to the Rosseland optical depth \(\tau_{\textrm{Ross}}=2/3\).

  3. The photospheric radius and luminosity of the supercritical disk wind were already determined at the first step, and considered fixed at this stage.

  4. Hereinafter by turbulent velocity we understand the microturbulent velocity.

  5. The name of the approximation is abbreviated by the first letters of the names of its authors.

  6. The photometric period measured from the data of long term Swift/UVOT monitoring of the object is somewhat shorter than the orbital period, \(P_{\textrm{orb}}=64.86\pm 0.19\) days (Fürst et al., 2021), and probably arises due to the superorbital modulation of the orbital period.

  7. The optical depth values for the wind depend on the parameters of the wind velocity variation law in the vicinity of the supercritical disk. For example, for a virial wind, according to relation (30) in Poutanen et al. (2007), for the wind matter outflow rates equal to about \(300\,\dot{M}_{\textrm{Edd}}\), the disk-plane optical depth of the wind would be about 100.

REFERENCES

  1. P. Abolmasov, S. Karpov, and T. Kotani, Publ. Astron. Soc. Japan 61, 213 (2009).

    Article  ADS  Google Scholar 

  2. J. Arons, Astrophys. J. 184, 539 (1973).

    Article  ADS  Google Scholar 

  3. M. Asplund, N. Grevesse, A. J. Sauval, and P. Scott, Annual Rev. Astron. Astrophys. 47 (1), 481 (2009).

    Article  ADS  Google Scholar 

  4. S. Avdan, A. Vinokurov, S. Fabrika, et al., Monthly Notices Royal Astron. Soc. 455, L91 (2016).

    ADS  Google Scholar 

  5. M. M. Basko, S. Hatchett, R. McCray, and R. A. Sunyaev, Astrophys. J. 215, 276 (1977).

    Article  ADS  Google Scholar 

  6. J. M. Blondin, Astrophys. J. 435, 756 (1994).

    Article  ADS  Google Scholar 

  7. J. C. Bouret, D. J. Hillier, T. Lanz, and A. W. Fullerton, Astron. and Astrophys. 544, id. A67 (2012).

  8. L. P. Carneiro, J. Puls, and T. L. Hoffmann, Astron. and Astrophys. 615, id. A4 (2018).

  9. J. I. Castor, D. C. Abbott, and R. I. Klein, Astrophys. J. 195, 157 (1975).

    Article  ADS  Google Scholar 

  10. A. Chashkina, G. Lipunova, P. Abolmasov, and J. Poutanen, Astron. and Astrophys. 626, id. A18 (2019).

  11. E. L. Chentsov and A. N. Sarkisyan, Astrophysical Bulletin 62 (3), 257 (2007).

    Article  ADS  Google Scholar 

  12. P. A. Crowther, D. J. Lennon, and N. R. Walborn, Astron. and Astrophys. 446 (1), 279 (2006).

    Article  ADS  Google Scholar 

  13. P. A. Crowther and L. J. Smith, Astron. and Astrophys. 320, 500 (1997).

    ADS  Google Scholar 

  14. D. Cseh, F. Grisé, S. Corbel, and P. Kaaret, Astrophys. J. 728 (1), article id. L5 (2011).

  15. D. Cseh, F. Grisé, P. Kaaret, et al., Monthly Notices Royal Astron. Soc. 435, 2896 (2013).

    Article  ADS  Google Scholar 

  16. C. S. R. Day and I. R. Stevens, Astrophys. J. 403, 322 (1993).

    Article  ADS  Google Scholar 

  17. P. P. Eggleton, Astrophys. J. 268, 368 (1983).

    Article  ADS  Google Scholar 

  18. I. El Mellah, J. O. Sundqvist, and R. Keppens, Astron. and Astrophys. 622, id. L3 (2019).

  19. S. Fabrika, Astrophys. Space Phys. Res. 12, 1 (2004).

    ADS  Google Scholar 

  20. S. Fabrika, Y. Ueda, A. Vinokurov, et al., Nature Physics 11 (7), 551 (2015).

    Article  ADS  Google Scholar 

  21. S. N. Fabrika, K. E. Atapin, A. S. Vinokurov, and O. N. Sholukhova, Astrophysical Bulletin 76 (1), 6 (2021).

    Article  ADS  Google Scholar 

  22. E. L. Fitzpatrick, Publ. Astron. Soc. Pacific 111 (755), 63 (1999).

    Article  ADS  Google Scholar 

  23. F. Fürst, D. J. Walton, F. A. Harrison, et al., Astrophys. J. 831 (2), article id. L14 (2016).

  24. F. Fürst, D. J. Walton, M. Heida, et al., Astron. and Astrophys. 616, id. A186 (2018).

  25. F. Fürst, D. J. Walton, M. Heida, et al., Astron. and Astrophys. 651, id. A75 (2021).

  26. L. Georgiev, G. Koenigsberger, D. J. Hillier, et al., Astron. J. 142 (6), article id. 191 (2011).

  27. S. R. Goldman, J. T. van Loon, A. A. Zijlstra, et al., Monthly Notices Royal Astron. Soc. 465 (1), 403 (2017).

    Article  ADS  Google Scholar 

  28. V. P. Goranskii, V. F. Esipov, and A. M. Cherepashchuk, Astronomy Reports 42 (2), 209 (1998).

    ADS  Google Scholar 

  29. J. H. Groh, D. J. Hillier, A. Damineli, et al., Astrophys. J. 698 (2), 1698 (2009).

    Article  ADS  Google Scholar 

  30. J. H. Groh, A. S. Oliveira, and J. E. Steiner, Astron. and Astrophys. 485 (1), 245 (2008).

    Article  ADS  Google Scholar 

  31. M. Haucke, L. S. Cidale, R. O. J. Venero, et al., Astron. and Astrophys. 614, id. A91 (2018).

  32. M. Heida, R. M. Lau, B. Davies, et al., Astrophys. J. 883 (2), article id. L34 (2019).

  33. J. E. Herald, D. J. Hillier, and R. E. Schulte-Ladbeck, Astrophys. J. 548 (2), 932 (2001).

    Article  ADS  Google Scholar 

  34. A. Herrero, S. R. Berlanas, A. Gil de Paz, et al., Monthly Notices Royal Astron. Soc. 511 (3), 3113 (2022).

    Article  ADS  Google Scholar 

  35. D. J. Hillier, Astron. and Astrophys. 247, 455 (1991).

    ADS  Google Scholar 

  36. D. J. Hillier and D. L. Miller, Astrophys. J. 496, 407 (1998).

    Article  ADS  Google Scholar 

  37. D. J. Hillier and D. L. Miller, Astrophys. J. 519, 354 (1999).

    Article  ADS  Google Scholar 

  38. T. C. Hillwig, D. R. Gies, W. Huang, et al., Astrophys. J. 615 (1), 422 (2004).

    Article  ADS  Google Scholar 

  39. C.-P. Hu, K. L. Li, A. K. H. Kong, et al., Astrophys. J. 835 (1), L9 (2017).

    Article  ADS  Google Scholar 

  40. G. L. Israel, A. Belfiore, L. Stella, et al., Science 355 (6327), 817 (2017).

    Article  ADS  Google Scholar 

  41. Y.-F. Jiang, J. M. Stone, and S. W. Davis, Astrophys. J. 796 (2), article id. 106 (2014).

  42. P. Kaaret, H. Feng, and T. P. Roberts, Annual Rev. Astron. Astrophys. 55 (1), 303 (2017).

    Article  ADS  Google Scholar 

  43. T. Kawashima and K. Ohsuga, Publ. Astron. Soc. Japan 72 (1), id. 15 (2020).

  44. T. Kawashima, K. Ohsuga, S. Mineshige, et al., Astrophys. J. 752 (1), article id. 18 (2012).

  45. T. Kitaki, S. Mineshige, K. Ohsuga, and T. Kawashima, Publ. Astron. Soc. Japan 73 (2), 450 (2021).

    Article  ADS  Google Scholar 

  46. P. Kosec, C. Pinto, D. J. Walton, et al., Monthly Notices Royal Astron. Soc. 479 (3), 3978 (2018).

    Article  ADS  Google Scholar 

  47. A. Kostenkov, S. Fabrika, O. Sholukhova, et al., Monthly Notices Royal Astron. Soc. 496 (4), 5455 (2020a).

    Article  ADS  Google Scholar 

  48. A. Kostenkov, A. Vinokurov, Y. Solovyeva, et al., Astrophysical Bulletin 75 (2), 182 (2020b).

    Article  ADS  Google Scholar 

  49. R. P. Kudritzki, J. Puls, D. J. Lennon, et al., Astron. and Astrophys. 350, 970 (1999).

    ADS  Google Scholar 

  50. H. J. G. L. M. Lamers, T. P. Snow, and D. M. Lindholm, Astrophys. J. 455, 269 (1995).

    Article  ADS  Google Scholar 

  51. G. V. Lipunova, Astronomy Letters 25 (8), 508 (1999).

    ADS  Google Scholar 

  52. J.-F. Liu, J. N. Bregman, Y. Bai, et al., Nature 503 (7477), 500 (2013).

    Article  ADS  Google Scholar 

  53. N. Markova and J. Puls, Astron. and Astrophys. 478 (3), 823 (2008).

    Article  ADS  Google Scholar 

  54. N. Markova, J. Puls, S. Simón-Díaz, et al., Astron. and Astrophys. 562, id. A37 (2014).

  55. P. Massey, K. F. Neugent, D. J. Hillier, and J. Puls, Astrophys. J. 768 (1), article id. 6 (2013).

  56. J. H. Matthews, C. Knigge, K. S. Long, et al., Monthly Notices Royal Astron. Soc. 450 (3), 3331 (2015).

    Article  ADS  Google Scholar 

  57. J. H. Matthews, C. Knigge, K. S. Long, et al., Monthly Notices Royal Astron. Soc. 458 (1), 293 (2016).

    Article  ADS  Google Scholar 

  58. P. S. Medvedev, S. N. Fabrika, V. V. Vasiliev, et al., Astronomy Letters 39 (12), 826 (2013).

    Article  ADS  Google Scholar 

  59. C. Motch, M. W. Pakull, F. Grisé, and R. Soria, Astronomische Nachrichten 332 (4), 367 (2011).

    Article  ADS  Google Scholar 

  60. C. Motch, M. W. Pakull, R. Soria, et al., Nature 514 (7521), 198 (2014).

    Article  ADS  Google Scholar 

  61. U. Munari, R. Sordo, F. Castelli, and T. Zwitter, Astron. and Astrophys. 442 (3), 1127 (2005).

    Article  ADS  Google Scholar 

  62. A. A. Mushtukov, A. Ingram, M. Middleton, et al., Monthly Notices Royal Astron. Soc. 484 (1), 687 (2019).

    Article  ADS  Google Scholar 

  63. F. Najarro, D. J. Hillier, and O. Stahl, Astron. and Astrophys. 326, 1117 (1997).

    ADS  Google Scholar 

  64. K. Ohsuga and S. Mineshige, Astrophys. J. 736 (1), 2 (2011).

    Article  ADS  Google Scholar 

  65. K. Ohsuga, S. Mineshige, M. Mori, and Y. Kato, Publ. Astron. Soc. Japan 61 (3), L7 (2009).

    Article  ADS  Google Scholar 

  66. K. Ohsuga, M. Mori, T. Nakamoto, and S. Mineshige, Astrophys. J. 628 (1), 368 (2005).

    Article  ADS  Google Scholar 

  67. T. Okuda, G. V. Lipunova, and D. Molteni, Monthly Notices Royal Astron. Soc. 398 (4), 1668 (2009).

    Article  ADS  Google Scholar 

  68. A. Pauldrach, J. Puls, and R. P. Kudritzki, Astron. and Astrophys. 164, 86 (1986).

    ADS  Google Scholar 

  69. L. S. Pilyugin, E. K. Grebel, and A. Y. Kniazev, Astron. J. 147 (6), article id. 131 (2014).

  70. C. Pinto, W. Alston, R. Soria, et al., Monthly Notices Royal Astron. Soc. 468 (3), 2865 (2017).

    Article  ADS  Google Scholar 

  71. C. Pinto, M. J. Middleton, and A. C. Fabian, Nature 533, 64 (2016).

    Article  ADS  Google Scholar 

  72. J. Poutanen, G. Lipunova, S. Fabrika, et al., Monthly Notices Royal Astron. Soc. 377, 1187 (2007).

    Article  ADS  Google Scholar 

  73. D. J. Radburn-Smith, R. S. de Jong, A. C. Seth, et al., Astrophys. J. Suppl. 195 (2), article id. 18 (2011).

  74. T. P. Roberts, J. C. Gladstone, A. D. Goulding, et al., Astronomische Nachrichten 332 (4), 398 (2011).

    Article  ADS  Google Scholar 

  75. A. N. Sarkisyan, A. S. Vinokurov, Y. N. Solovieva, et al., Astrophysical Bulletin 72 (4), 486 (2017).

    Article  ADS  Google Scholar 

  76. S. C. Searle, R. K. Prinja, D. Massa, and R. Ryans, Astron. and Astrophys. 481 (3), 777 (2008).

    Article  ADS  Google Scholar 

  77. N. I. Shakura and R. A. Sunyaev, Astron. and Astrophys. 500, 33 (1973).

    ADS  Google Scholar 

  78. A. Siviero and U. Munari, ASP Conf. Ser. 303, 167 (2003).

  79. A. Sa̧dowski and R. Narayan, Monthly Notices Royal Astron. Soc. 456 (4), 3929 (2016).

  80. I. R. Stevens and T. R. Kallman, Astrophys. J. 365, 321 (1990).

    Article  ADS  Google Scholar 

  81. V. Straizys and G. Kuriliene, Astrophys. and Space Sci. 80 (2), 353 (1981).

    Article  ADS  Google Scholar 

  82. H. R. Takahashi, S. Mineshige, and K. Ohsuga, Astrophys. J. 853 (1), article id. 45 (2018).

  83. H. R. Takahashi and K. Ohsuga, Publ. Astron. Soc. Japan 67 (4), id. 60 (2015).

  84. H. R. Takahashi and K. Ohsuga, Astrophys. J. 845 (1), article id. L9 (2017).

  85. S. Takeuchi, K. Ohsuga, and S. Mineshige, Publ. Astron. Soc. Japan 65, article id. 88 (2013).

  86. C. Trundle, D. J. Lennon, J. Puls, and P. L. Dufton, Astron. and Astrophys. 417, 217 (2004).

    Article  ADS  Google Scholar 

  87. J. S. Vink, Astron. and Astrophys. 619, id. A54 (2018).

  88. J. S. Vink, A. de Koter, and H. J. G. L. M. Lamers, Astron. and Astrophys. 362, 295 (2000).

    ADS  Google Scholar 

  89. A. Vinokurov, K. Atapin, and Y. Solovyeva, Astrophys. J. 893 (2), id. L28 (2020).

  90. A. Vinokurov, S. Fabrika, and K. Atapin, Astrophys. J. 854, article id. 176 (2018).

  91. S.-S. Weng and H. Feng, Astrophys. J. 853 (2), article id. 115 (2018).

  92. S. Yoshioka, S. Mineshige, K. Ohsuga, et al., Publ. Astron. Soc. Japan 74 (6), 1378 (2022).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the anonymous referees for their valuable comments which allowed us to significantly improve the text of the paper. This work is based on observations collected by the European Organization for Astronomical Research in the Southern Hemisphere within the framework of the 084.D-0881(A) program.

Funding

This work was supported by the Russian science foundation (project no. 21-72-10167 ‘‘Ultraluminous X-ray sources: wind and donors’’).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Kostenkov or A. Vinokurov.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostenkov, A., Vinokurov, A., Atapin, K. et al. The Nature of the Emission Spectrum of NGC 7793 P13: Testing the Supercritical Accretion Disk Wind Model. Astrophys. Bull. 78, 395–411 (2023). https://doi.org/10.1134/S1990341323700086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341323700086

Keywords:

Navigation