Skip to main content
Log in

Morphology and Kinematics of Interstellar Matter in the Vicinity of Young Stars ZZ Tau and ZZ Tau IRS

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

The morphology and kinematics of the matter in the vicinity of young stars ZZ Tau and ZZ Tau IRS are studied. It has been found that the emission nebula (the H\(\alpha\) filament) located southwest of these stars, as well as the Herbig–Haro object HH 393 projected onto it are moving away from ZZ Tau and ZZ Tau IRS with a radial velocity of about 50 km s\({}^{-1}\). On the inner edge of the western part of the H\(\alpha\) filament, there is a cooler filament emiting in the molecular hydrogen line (\(\lambda=2.12\) \(\mu\)m) and in the dust continuum. In the northeastern part of the studied region, a new Herbig–Haro object is discovered and assigned the number HH 1232. The presence of several more new emission nebulae is suspected. The electron density in the studied regions of the H\(\alpha\) filament, as well as HH 393 and HH 1232 \(N_{e}\lesssim 100\) cm\({}^{-3}\). Arguments are presented in favor of the fact that the dusty disk wind has created a gas-and-dust nebula around ZZ Tau IRS, along the symmetry axis of which there is a jet moving in the direction of HH 393.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. https://obs.sai.msu.ru/cmo/sai25/wfi/

  2. https://obs.sai.msu.ru/cmo/sai25/tds/

  3. https://irsa.ipac.caltech.edu/Missions/spitzer.html

  4. PI: T. Megeath, Proposal ID:14181, https://mast.stsci.edu

REFERENCES

  1. R. L. Akeson, E. L. N. Jensen, J. Carpenter, et al., Astrophys. J. 872 (2), article id. 158 (2019).

  2. S. M. Andrews, Annual Rev. Astron. Astrophys. 58, 483 (2020).

    Article  ADS  Google Scholar 

  3. J. Bally, Annual Rev. Astron. Astrophys. 54, 491 (2016).

    Article  ADS  Google Scholar 

  4. J. Bally, J. Walawender, and B. Reipurth, Astron. J. 144 (5), article id. 143 (2012).

  5. A. Belinski, M. Burlak, A. Dodin, et al., Monthly Notices Royal Astron. Soc. 515 (1), 796 (2022).

    Article  ADS  Google Scholar 

  6. V. S. Beskin, V. I. Krauz, and S. A. Lamzin, Physics Uspekhi 66 (4), 327 (2023).

    Article  ADS  Google Scholar 

  7. A. G. A. Brown et al. (Gaia Collab.), Astron. and Astrophys. 649, id. A1 (2021).

  8. S. Cabrit, Proc. IAU Symp. No. 243, Ed. by J. Bouvier and I. Appenzeller (Cambridge Univ. Press, Cambridge, 2007) p. 203.

  9. M. A. Dopita and R. S. Sutherland, Astrophys. J. Suppl. 229 (2), article id. 35 (2017).

  10. A. Frank, T. P. Ray, S. Cabrit, et al., Protostars and Planets VI, Ed. by H. Beuther, R. S. Klessen, C. P. Dullemond, and T. Henning (University of Arizona Press, Tucson, 2014), p. 451.

    Google Scholar 

  11. E. Furlan, K. L. Luhman, C. Espaillat, et al., Astrophys. J. Suppl. 195, article id. 3 (2011).

  12. M. Gomez, B. A. Whitney, and S. J. Kenyon, Astron. J. 114, 1138 (1997).

    Article  ADS  Google Scholar 

  13. L. Hartmann, G. Herczeg, and N. Calvet, Annual Rev. Astron. Astrophys. 54, 135 (2016).

    Article  ADS  Google Scholar 

  14. J. Hashimoto, R. Dong, and T. Muto, Astron. J. 161 (6), id. 264 (2021).

  15. G. H. Herbig and B. F. Jones, Astron. J. 86, 1232 (1981).

    Article  ADS  Google Scholar 

  16. M. H. Heyer, R. L. Snell, P. F. Goldsmith, and P. C. Myers, Astrophys. J. 321, 370 (1987).

    Article  ADS  Google Scholar 

  17. K.-W. Hodapp, Astrophys. J. Suppl. 94, 615 (1994).

    Article  Google Scholar 

  18. A. Kobzar, Applied Mathematics Statistics. For Engineers and Scientists Workers (Fizmatlit, Moscow, 2006) [in Russian].

    Google Scholar 

  19. M. Kounkel, K. Covey, M. Moe, et al., Astron. J. 157 (5), article id. 196 (2019).

  20. H. Li, D. Li, L. Qian, et al., Astrophys. J. Suppl. 219 (2), article id. 20 (2015).

  21. R. Mundt and J. W. Fried, Astrophys. J. 274, L83 (1983).

    Article  ADS  Google Scholar 

  22. A. E. Nadjip, A. M. Tatarnikov, D. W. Toomey, et al., Astrophysical Bulletin 72 (3), 349 (2017).

    Article  ADS  Google Scholar 

  23. G. Narayanan, R. Snell, and A. Bemis, Monthly Notices Royal Astron. Soc. 425 (4), 2641 (2012).

    Article  ADS  Google Scholar 

  24. S. A. Potanin, A. A. Belinski, A. V. Dodin, et al., Astronomy Letters 46 (12), 836 (2020).

    Article  ADS  Google Scholar 

  25. B. Proxauf, S. Öttl, and S. Kimeswenger, Astron. and Astrophys. 561, id. A10 (2014).

  26. T. Prusti et al. (Gaia Collab.), Astron. and Astrophys. 595, id. A1 (2016).

  27. B. Reipurth, VizieR Online Data Catalog V/104 (2000).

  28. B. Reipurth and J. Bally, Annual Rev. Astron. Astrophys. 39, 403 (2001).

    Article  ADS  Google Scholar 

  29. R. L. Snell, R. B. Loren, and R. L. Plambeck, Astrophys. J. 239, L17 (1980).

    Article  ADS  Google Scholar 

  30. A. M. Tatarnikov, S. G. Zheltoukhov, N. Shatsky, et al., Astrophysical Bulletin 78 (3), 384 (2023).

    Google Scholar 

  31. M. W. Werner, T. L. Roellig, F. J. Low, et al., Astrophys. J. Suppl. 154 (1), 1 (2004).

    Article  ADS  Google Scholar 

  32. R. J. White and L. A. Hillenbrand, Astrophys. J. 616, 998 (2004).

    Article  ADS  Google Scholar 

  33. S. Wolf, Computer Physics Communications 150 (2), 99 (2003).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the CMO staff for their help with the observations, T.Yu. Magakyan for useful discussions, and Bo Repurth for including the Herbig–Haro object discovered by us in the general catalog of objects of this type and assigning it the number HH 1232. We note with gratitude that we used the SIMBAD database (CDS, Strasbourg, France), Astrophysics Data System (NASA, USA), and the NASA/IPAC Infrared Science Archive (California Institute of Technology) in our work.

Funding

The work is based on the observed data obtained at the Caucasian Mountain Observatory of the SAI of MSU using the scientific instruments partially purchased at the expense of the Development Program of the Lomonosov Moscow State University. The work by A.D. (observations, data reduction, interpretation), S.L. (interpretation), B.S. (observations, interpretation), I.S. (observations) was carried out with the financial support of the Russian Science Foundation (grant no. 20-72-10011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Lamzin.

Ethics declarations

The authors declare no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dodin, A.V., Zheltoukhov, S.G., Lamzin, S.A. et al. Morphology and Kinematics of Interstellar Matter in the Vicinity of Young Stars ZZ Tau and ZZ Tau IRS. Astrophys. Bull. 78, 364–371 (2023). https://doi.org/10.1134/S1990341323700116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341323700116

Keywords:

Navigation