Skip to main content
Log in

The impact of the non-coincidence gauge on the dark energy dynamics in f(Q)-gravity

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study the dynamical effects of the non-coincidence gauge on the geometric dark energy within the framework of \(f\left( Q\right) \)-gravity. We specifically examine a spatially flat Friedmann–Lemaître–Robertson–Walker universe with a dust fluid source, employing \(f\left( Q\right) \)-theory of gravity. Our goal is to analyze the dynamical evolution of cosmological parameters to reconstruct the cosmological history. We reproduce previous findings; nevertheless due to the presence of the dust fluid, new asymptotic solutions exist. We emphasize the significance of selecting the appropriate connection, as it dramatically change the cosmological dynamics. Additionally, we show that for the simple power-law \(f\left( Q\right) \) model, there exist a non-coincidence connection where the field equation reconstruct the main epochs of the cosmological history, that is, inflation, radiation epoch, matter era and the late-time acceleration is attributed to the de Sitter solution, which is the unique attractor of the solution trajectories. Moreover this model support Big Rip singularities as unstable solutions in the past.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Perlmutter, S., et al.: Measurements of \(\Omega \) and \(\Lambda \) from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1998)

    Article  ADS  Google Scholar 

  2. Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  3. Suzuki, N., et al.: The Hubble space telescope cluster supernova survey. V. Improving the dark-energy constraints above z \(>\) 1 and building an early-type-hosted supernova sample. Astrophys. J. 746, 85 (2012)

    Article  ADS  Google Scholar 

  4. Clifton, T., Ferreira, P.G., Padilla, A., Skordis, C.: Phys. Rep. 513, 1 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  5. Nojiri, S., Odintsov, S.D., Oikonomou, V.K.: Phys. Rep. 692, 1 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  6. Valentino, E., Mena, O., Pan, S., Visinelli, L., Yang, W., Melchiorri, A., Mota, D.F., Riess, A.G., Silk, J.: Class. Quantum Grav. 38, 153001 (2021)

    Article  ADS  Google Scholar 

  7. Jimenez, J.B., Heisenberg, L., Koivisto, T.: Phys. Rev. D 98, 044048 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  8. Järv, L., Runkla, M., Saal, M., Vilson, Ott: Phys. Rev. D 97, 124025 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  9. Hohmann, M.: Phys. Rev. D 104, 124077 (2021)

    Article  ADS  Google Scholar 

  10. Buchdahl, H.A.: Non-linear Lagrangians and cosmological theory. Mon. Not. R. Astron. Soc. 150, 1 (1970)

    Article  ADS  Google Scholar 

  11. Ferraro, R., Fiorini, F.: Modified teleparallel gravity: inflation without an inflaton. Phys. Rev. D 75, 084031 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  12. Jimenez, J.B., Heisenberg, L., Koivisto, T.S.: The geometrical trinity of gravity. Universe 5, 173 (2019)

    Article  ADS  Google Scholar 

  13. Hohmann, M.: General covariant symmetric teleparallel cosmology. Phys. Rev. D 104, 124077 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  14. Ambrosio, F., D’ Heisenberg, L., Kuhn, S.: Revisiting cosmologies in teleparallelism. Class. Quantum Grav. 39, 025013 (2022)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. Zhao, D.: Covariant formulation of f(Q) theory. Eur. Phys. J. C 82, 303 (2022)

    Article  ADS  Google Scholar 

  16. Pati, L., Kadam, S.A., Tripathy, S.K., Mishra, B.: Phys. Dark Univ. 35, 100925 (2022)

    Article  Google Scholar 

  17. Pradhan, A., Maurya, D.C., Dixit, A.: Int. J. Geom. Methods Mod. Phys. 18, 2150124 (2021)

    Article  Google Scholar 

  18. Solanki, R., De, A., Sahoo, P.K.: Phys. Dark Univ. 36, 100996 (2022)

    Article  Google Scholar 

  19. Anagnostopoulos, F.K., Basilakos, S., Saridakis, E.N.: Phys. Lett. B 822, 136634 (2021)

    Article  Google Scholar 

  20. Lymperis, A.: JCAP 11, 018 (2022)

    Article  MathSciNet  ADS  Google Scholar 

  21. Atayde, L., Frusciante, N.: Phys. Rev. D 104, 064052 (2021)

    Article  ADS  Google Scholar 

  22. Barros, B.J., Barreiro, T., Koivisto, T., Nunes, N.J.: Phys. Dark Univ. 30, 100616 (2020)

    Article  Google Scholar 

  23. Dimakis, N., Paliathanasis, A., Roumeliotis, M., Christodoulakis, T.: Phys. Rev. D 106, 043509 (2022)

    Article  ADS  Google Scholar 

  24. Paliathanasis, A.: Phys. Dark Univ. 41, 101255 (2023)

    Article  Google Scholar 

  25. Shabani, H., De, A., Loo, T.-H.: Eur. Phys. J. C 83, 535 (2023)

    Article  ADS  Google Scholar 

  26. Khyllep, W., Paliathanasis, A., Dutta, J.: Phys. Rev. D 103, 103521 (2021)

    Article  ADS  Google Scholar 

  27. Subramaniam, G., De, A., Loo, T.-H., Goh, Y.K.: Fortsch. Phys. Prog. Phys. (2023). https://doi.org/10.1002/prop.202300038

    Article  Google Scholar 

  28. Shi, J.: Cosmological constraints in covariant f(Q) gravity with different connections (2023). [arXiv:2307.08103]

  29. Sokolium, O., Arora, S., Praharaj, S., Baransky, A., Sahoo, P.K.: MNRAS 522, 252 (2023)

    Article  ADS  Google Scholar 

  30. Blixt, D., Golovnev, A., Guzman, M.-J., Maksyutov, R.: Geometry and covariance of symmetric teleparallel theories of gravity (2023). [arXiv:2306.09289]

  31. Dimakis, N., Paliathanasis, A., Christodoulakis, T.: Class. Quantum Grav. 38, 225003 (2021)

    Article  ADS  Google Scholar 

  32. Dimakis, N., Roumeliotis, M., Paliathanasis, A., Apostolopoulos, P.S., Christodoulakis, T.: Phys. Rev. D 106, 123516 (2022)

    Article  ADS  Google Scholar 

  33. Atayde, L., Frusciante, N.: Phys. Rev. D 107, 124048 (2023)

    Article  ADS  Google Scholar 

  34. Myrzakulov, N., Koussour, M., Gogoi, D.J.: Phys. Dark Univ. 42, 101268 (2023)

    Article  Google Scholar 

  35. Paliathanasis, A.: Symmetric teleparallel \(f\left( Q\right) \)-cosmology with nonzero curvature, submitted (2023)

  36. Shabani, H., De, A., Loo, T.-H., Saridakis, E.N.: Cosmology of \(f\left( Q\right) \) gravity in non-flat Universe (2023). [arXiv:2306.13324]

  37. Heisenberg, L.: Review on f(Q) gravity (2023). [arXiv:2309.15958]

  38. Chen, L.: Phys. Rev. D 99, 064025 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  39. Coley, A., Leon, G.: Gen. Relativ. Gravit. 51, 115 (2019)

    Article  ADS  Google Scholar 

  40. Copeland, E.J., Liddle, A.R., Wands, D.: Phys. Rev. D 57, 4686 (1998)

    Article  ADS  Google Scholar 

  41. Farajollahi, H., Salehi, A.: JCAP 07, 036 (2011)

    Article  ADS  Google Scholar 

  42. Amendola, L., Polarski, D., Tsujikawa, S.: Phys. Rev. Lett. 98, 131302 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  43. Amendola, L., Gannouji, R., Polarski, D., Tsujikawa, S.: Phys. Rev. D 75, 083504 (2007)

    Article  ADS  Google Scholar 

  44. Gonzales, T., Leon, G., Quiros, I.: Class. Quantum Grav. 23, 3165 (2006)

    Article  ADS  Google Scholar 

  45. Leon, G., Saridakis, E.N.: JCAP 1504, 031 (2015)

    Article  ADS  Google Scholar 

  46. Lazkoz, R., Leon, G.: Phys. Lett. B 638, 303 (2006)

    Article  ADS  Google Scholar 

  47. Collinucci, A., Nielsen, M., Van Riet, T.: Class. Quantum Grav. 22, 1269 (2005)

    Article  ADS  Google Scholar 

  48. Bahamonde, S., Järv, L.: Eur. Phys. J. C 82, 963 (2022)

    Article  ADS  Google Scholar 

  49. Tomonari, K., Bahamonde, S.: Dirac–Bergmann analysis and degrees of freedom of coincident f(Q)-gravity (2023). [arXiv:2308.06469]

  50. Paliathanasis, A., Barrow, J.D., Leach, P.G.L.: Phys. Rev. D 94, 023525 (2016)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

The author thanks the support of Vicerrectoría de Investigación y Desarrollo Tecnológico (Vridt) at Universidad Católica del Norte through Núcleo de Investigación Geometría Diferencial y Aplicaciones, Resolución Vridt No - 098/2022. AP acknowledges the hospitality of the Ionian University while part of this work carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andronikos Paliathanasis.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paliathanasis, A. The impact of the non-coincidence gauge on the dark energy dynamics in f(Q)-gravity. Gen Relativ Gravit 55, 130 (2023). https://doi.org/10.1007/s10714-023-03179-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03179-4

Keywords

Navigation