Skip to main content
Log in

Calculation of Heat Loads in Analysis of Superorbital Entry of Spacecraft into Atmosphere of the Earth

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

Correlations for calculation of heat loads during a return of spacecraft at the second cosmic velocity are given. Analysis of the heat transfer for a model descent trajectory has been carried out. The convective and radiative heat fluxes, the relative heat transfer coefficient, and the radiative-equilibrium surface temperature have been calculated. The results obtained are a basis for design and optimization of the heat shield of spacecraft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

REFERENCES

  1. Tirskii, G.A., Sakharov, V.I., Kovalev, V.L., Egorov, I.V., et al., Giperzvukovaya aerodinamika i teplomassoobmen spuskaemykh kosmicheskikh apparatov i planetnykh zondov (Hypersonic Aerodynamics and Heat-Mass Transfer of Landing Spacecraft and Planetary Space Sensors), Moscow: Fizmatlit, 2011.

    Google Scholar 

  2. Viviani, A. and Pezzella, G., Aerodynamic and Aerothermodynamic Analysis of Space Mission Vehicles, Springer, Switzerland, 2015.

    Book  Google Scholar 

  3. Surzhikov, S.T., Komp’yuternaya aerofizika spuskaemykh kosmicheskikh apparatov. Dvumernye modeli (Computer Aerophysics of Landings Spacecraft. 2D Models), Moscow: Fizmatli, 2018.

    Google Scholar 

  4. Salomatov, V.V. and Salomatov, V.V., Computational Modeling of Turbulent Flows, J. Eng. Therm., 2020, vol. 29, no. 1, pp.156–169; https://doi.org/10.1134/S1810232820010117.

    Article  Google Scholar 

  5. Surzhikov, S.T., Radiation Gas Dynamics of the Frontal Surface of the Command Module of Apollo-4 at Superorbital Entry into the Atmosphere, Izv. RAN. MZHG, 2017, vol. 6, pp. 108–124.

    Google Scholar 

  6. Surzhikov, S.T., Radiation Aerothermodynamics of the Stardust Space Vehicle, J. Appl. Math. Mech., 2016, vol. 80, no. 1, pp. 44–56; https://doi.org/10.1016/j.jappmathmech.2016.05.008.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Egorov, I.V. and Nikol’skii, V.S., Viscous Hypersonic Currents for Various Aerophysical Models, Izv. RAN. MZHG, 1996, vol. 4, pp. 151–161.

    Google Scholar 

  8. Gurvich, L.V., Veitz, I.V., et al., Termodinamicheskie svoistva individual’nykh veshchestv: spravochnoe izdanie v 4-kh tomakh (Thermodynamic Properties of Individual Substances: Reference Edition in 4 Volumes), Moscow: Nauka, 1982.

    Google Scholar 

  9. Park, C., Howe, J., and Jaffe, R., Review of Chemical-Kinetic Problems of Future NASA Mission, II: Mars Entries, J. Therm. Heat Transfer, 1994, vol. 8, no. 1, pp. 9–23; https://doi.org/10.2514/3.496.

    Article  ADS  Google Scholar 

  10. Wood, W.A. and Eberhardt, S., Dual-Code Solution Strategy for Chemically-Reacting Hypersonic Flows, AIAA Paper, 1995, vol. 95–0158; https://doiorg/10.2514/6.1995-158.

  11. Afonina, N.E., Gromov, V.G., and Kovalyov, V.L., Heat Transfer with Catalytic Surfaces of Heat Shield of Spacecraft Entering the Atmosphere of Mars, Mat. Model., 2000, vol. 12, no. 7, pp. 79–86.

    Google Scholar 

  12. Alnak, D.E., Koca, F., and Alnak, Y.A., Numerical Investigation of Heat Transfer from Heated Surfaces of Different Shapes, J. Eng. Therm., 2021, vol. 30, no. 3, pp. 494–507; https://doi.org/10.1134/ S1810232821030127.

    Article  Google Scholar 

  13. Zel’dovich, Ya.B. and Raiser, Yu.P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii (Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena), Moscow: Fizmatlit, 2008.

    Google Scholar 

  14. Reviznikov, D.L. and Sukharev, T.Yu., Hypersonic Flow around Blunt Bodies in the Atmosphere of the Earth and Mars. Comparative Analysis of Mathematical Models, Tepl. Prots. Tekhn., 2018, vol. 10, nos. 1/2, pp. 5–15.

    Google Scholar 

  15. Nomura, W., Determination of Heat Flux Density at Critical Point of Blunt Body in Hypersonic Flux at Small Reynolds Numbers, AKT, 1984, vol. 2, no. 7.

  16. Johnston, C.O., Hollis, B.R., and Sutton, K., Nonequilibrium Stagnation-Line Radiative Heating for Fire-II, JSR, 2008, vol. 45, no. 6, p. 1185; https://doi.org/10.2514/1.33008.

    Article  ADS  Google Scholar 

  17. Cornette, E.S., Forebody Temperatures and Calorimeter Heating Rates Measured during Project Fire II Reentry at 11.35 km/s, NASA TM X-13 05, 1966.

  18. Olynick, D.R., Henline, W.D., Hartung, L.C., and Candler, G.V., Comparison of Coupled Radiative Navier–Stokes Flow Solutions with the Project Fire-II Flight Data, AIAA, 1994; https://doi.org/10.2514/6.1994-1955.

  19. Surzhikov, S.T. and Shuvalov, M.P., Testing of Calculated Data on Radiation and Convective Heating of Landing New-Generation Spacecraft, Teplofiz. Vys. Temp., 2013, vol. 51, no. 3, pp. 456–470.

    Google Scholar 

  20. Surzhikov, S.T. and Shuvalov, M.P., Analysis of Radiation-Convective Heating of Four Types of Landing Spacecraft, Fiz.-Khim. Kinet. Gaz. Din., 2014, vol. 15, no. 4.

    Google Scholar 

  21. Shevelev, Yu.D. and Syzranova, N.G., Influence of Chemical Reactions on Heat Transfer in the Boundary Layer, Fiz.-Khim. Kinet. Gaz. Din., 2010, vol. 10, no. 2, pp. 91–126.

    Google Scholar 

  22. Brandis, A.M. and Johnston, C.O., Characterization of Stagnation-Point Heat Flux for Earth Entry, AIAA, 2014; https://doi.org/10.2514/6.2014-2374.

  23. Samarskii, A.A. and Gulin, A.V., Chislennye metody (Numerical Methods), Moscow: Nauka, 1989.

    Google Scholar 

  24. Avduevskii, V.S. and Koshkin, V.K., Osnovy teploperedachi v aviatsionnoi i raketno-kosmicheskoi tekhnike (Basics of Heat Transfer in Aviation and Rocket-Space Technology), Moscow: Mashinostroenie, 1992.

    Google Scholar 

  25. Fay, J.A. and Ridell, F.R., Theory of Stagnation Point Heat Transfer in Dissociated Air, J. Aeronavt. Sci., 1958, vol. 25, no. 2, pp. 73–82; https://doi.org/10.2514/8.7517.

  26. Tauber, M.E. and Sutton, K., Stagnation-Point Radiative Heating Relations for Earth and Mars Entries, J. Spacecraft, 1991, vol. 28, no. 1, p. 40; https://doi.org/10.2514/3.26206.

    Article  ADS  Google Scholar 

  27. Johnson, J.E., Starkey, R.P., and Lewis, M.J., Aerothermodynamic Optimization of Reentry Heat Shield Shapes for a Crew Exploration Vehicle, J. Spacecraft Rockets, 2007, vol. 44, no. 4, p. 849; https://doi.org/ 10.2514/1.27219.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Reviznikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reviznikov, D.L., Nenarokomov, A.V., Konstantinov, M.S. et al. Calculation of Heat Loads in Analysis of Superorbital Entry of Spacecraft into Atmosphere of the Earth. J. Engin. Thermophys. 32, 467–481 (2023). https://doi.org/10.1134/S1810232823030050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232823030050

Navigation