Skip to main content
Log in

An Effective Denoising Method for the Point Cloud of Trees Based on the Hybrid Filtering Scheme

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

The point cloud-based 3D reconstruction techniques have been widely used in the tree phenotype monitoring, and the data denoising is the essential step due to the various noise problems encountered in practical applications. An effective and accurate denoising method for the point cloud of trees by the hybrid filtering scheme is proposed in this paper. The statistical filtering algorithm is firstly well studied to give the best parameters to remove the outliers of the point cloud data; and then an improved voxel filtering method is proposed by replacing the representative points of a voxel with the neighboring points of the center of gravity that is computed from the voxel in the original point cloud. By comparing the time cost and the spatial features to maintain, the experimental results fully prove the proposed method can effectively reduce the multiscale noise without damaging the geometric structure of the source data, performing better than the traditional voxel filter and the statistical filter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. De Conto, T., Olofsson, K., Görgens, E.B., Rodriguez, L., and Almeida, G., Performance of stem denoising and stem modelling algorithms on single tree point clouds from terrestrial laser scanning, Comput. Electron. Agric., 2017, vol. 143, pp. 165–176. https://doi.org/10.1016/j.compag.2017.10.019

    Article  Google Scholar 

  2. Swayze, N.C. and Tinkham, W.T., Application of unmanned aerial system structure from motion point cloud detected tree heights and stem diameters to model missing stem diameters, MethodsX, 2022, vol. 9, p. 101729. https://doi.org/10.1016/j.mex.2022.101729

    Article  Google Scholar 

  3. Westling, F., Underwood, J., and Bryson, M., Graph-based methods for analyzing orchard tree structure using noisy point cloud data, Comput. Electron. Agric., 2021, vol. 187, p. 106270. https://doi.org/10.1016/j.compag.2021.106270

    Article  Google Scholar 

  4. Li, Ya., Wang, P., Sun, J., and Gan, X., Simulation of tree point cloud based on the ray-tracing algorithm and three-dimensional tree model, Biosyst. Eng., 2020, vol. 200, pp. 259–271. https://doi.org/10.1016/j.biosystemseng.2020.10.007

    Article  Google Scholar 

  5. Qian, Y., Cao, P., Yin, W., Dai, F., Hu, F., and Yan, Zh., Calculation method of surface shape feature of rice seed based on point cloud, Comput. Electron. Agric., 2017, vol. 142, pp. 416–423. https://doi.org/10.1016/j.compag.2017.09.009

    Article  Google Scholar 

  6. Trochta, J., Krůček, M., Vrška, T., and Král, K., 3D Forest: An application for descriptions of three-dimensional forest structures using terrestrial LiDAR, PLoS ONE, 2017, vol. 12, no. 5, p. e0176871. https://doi.org/10.1371/journal.pone.0176871

    Article  Google Scholar 

  7. Wolff, K., Kim, C., Zimmer, H., Schroers, C., Botsch, M., Sorkine-Hornung, O., and Sorkine-Hornung, A., Point cloud noise and outlier removal for image-based 3D reconstruction, 2016 Fourth Int. Conf. on 3D Vision (3DV), Stanford, Calif., 2016, IEEE, 2016, pp. 118–127. https://doi.org/10.1109/3dv.2016.20

  8. Whebell, R.M., Moroney, T.J., Turner, I.W., Pethiyagoda, R., and Mccue, S.W., Implicit reconstructions of thin leaf surfaces from large, noisy point clouds, Appl. Math. Modell., 2021, vol. 98, pp. 416–434. https://doi.org/10.1016/j.apm.2021.05.014

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, W., Su, T., Liu, H., Li, X., Jia, Z., Zhou, L., Song, Z., and Ding, M., Surface reconstruction from unoriented point clouds by a new triangle selection strategy, Comput. Graphics, 2019, vol. 84, pp. 144–159. https://doi.org/10.1016/j.cag.2019.08.002

    Article  Google Scholar 

  10. Zou, B., Qiu, H., and Lu, Yu., Point cloud reduction and denoising based on optimized downsampling and bilateral filtering, IEEE Access, 2020, vol. 8, pp. 136316–136326. https://doi.org/10.1109/access.2020.3011989

    Article  Google Scholar 

  11. Lin, Yi-P. and Hsu, K.-W., Dealing with noisy data on point cloud models, 2014 IEEE Int. Symp. on Multimedia, Taichung, 2014, IEEE, 2014, pp. 255–258. https://doi.org/10.1109/ism.2014.40

  12. Weyrich, T., Pauly, M., Keiser, R., Heinzle, S., Scandella, S., and Gross, M., Post-processing of scanned 3D surface data, Proc. First Eurographics Conf. on Point-Based Graphics, Alexa, M., Gross, M., Pfister, H., and Rusinkiewicz, S., Eds., Goslar, Germany: Eurographics Assoc., 2004, pp. 85–94.

  13. Han, X.-F., Jin, J., Wang, M.-J., and Jiang, W., Guided 3D point cloud filtering, Multimedia Tools Appl., 2018, vol. 77, no. 13, pp. 17397–17411. https://doi.org/10.1007/s11042-017-5310-9

    Article  Google Scholar 

  14. Jia, C.Ch., Wang, C.J., Yang, T., Fan, B.H., and He, F.G., A 3D point cloud filtering algorithm based on surface variation factor classification, Procedia Comput. Sci., 2019, vol. 154, pp. 54–61. https://doi.org/10.1016/j.procs.2019.06.010

    Article  Google Scholar 

  15. Wang, R., Chen, W., Zhang, S., Zhang, Yi., and Ye, X., Similarity-based denoising of point-sampled surfaces, J. Zhejiang Univ.–Sci. A, 2008, vol. 9, no. 6, pp. 807–815. https://doi.org/10.1631/jzus.a071465

    Article  MATH  Google Scholar 

  16. Li, R., Yang, M., Ran, Y., Zhang, H., Jing, J., and Li, P., Point cloud denoising and simplification algorithm based on method library, Laser Optoelectron. Prog., 2018, vol. 55, no. 1, p. 11008. https://doi.org/10.3788/LOP55.011008

    Article  Google Scholar 

  17. Zhong, S., Zhong, Z., and Hua, J., Surface reconstruction by parallel and unified particle-based resampling from point clouds, Comput. Aided Geometric Des., 2019, vol. 71, pp. 43–62. https://doi.org/10.1016/j.cagd.2019.04.011

    Article  MathSciNet  MATH  Google Scholar 

  18. Lhuillier, M., Surface reconstruction from a sparse point cloud by enforcing visibility consistency and topology constraints, Comput. Vision Image Understanding, 2018, vol. 175, pp. 52–71. https://doi.org/10.1016/j.cviu.2018.09.007

    Article  Google Scholar 

  19. Zhou, J., Han, Z., and Wang, L., A steady arm slope detection method based on 3D point cloud segmentation, 2018 IEEE 3rd Int. Conf. on Image, Vision and Computing (ICIVC), Chongqing, China, 2018, IEEE, 2018, pp. 278–282. https://doi.org/10.1109/icivc.2018.8492785

  20. Duan, Ya., Yang, C., Chen, H., Yan, W., and Li, H., Low-complexity point cloud denoising for LiDAR by PCA-based dimension reduction, Opt. Commun., 2021, vol. 482, p. 126567. https://doi.org/10.1016/j.optcom.2020.126567

    Article  Google Scholar 

  21. Wang, Z., Yang, C., Ju, Z., Li, Z., and Su, C., Preprocessing and transmission for 3D point cloud data, Intelligent Robotics and Applications. ICIRA 2017, Huang, Y., Wu, H., Liu, H., and Yin, Z., Eds., Lecture Notes in Computer Science, vol. 10462, Cham: Springer, 2017, pp. 438–449. https://doi.org/10.1007/978-3-319-65289-4_42

    Book  Google Scholar 

  22. Yang, C., Wang, Z., He, W., and Li, Z., Development of a fast transmission method for 3D point cloud, Multimedia Tools Appl., 2018, vol. 77, no. 19, pp. 25369–25387. https://doi.org/10.1007/s11042-018-5789-8

    Article  Google Scholar 

  23. Zhao, Q., Gao, X., Li, J., and Luo, L., Optimization algorithm for point cloud quality enhancement based on statistical filtering, J. Sens., 2021, vol. 2021, pp. 1–10. https://doi.org/10.1155/2021/7325600

    Article  Google Scholar 

  24. Pang, Z., Zhou, Z., Wang, L., et al., Improved three-dimensional reconstruction algorithm for point cloud data, Laser Optoelectron. Prog., 2020, vol. 57, no. 2, p. 021102.

    Article  Google Scholar 

  25. Han, X.-F., Jin, J., Wang, M.-J., Jiang, W., Gao, L., and Xiao, L., A review of algorithms for filtering the 3D point cloud, Signal Process.: Image Commun., 2017, vol. 57, pp. 103–112. https://doi.org/10.1016/j.image.2017.05.009

    Article  Google Scholar 

  26. Zhang, Ya., Jia, T., Chen, Ya., and Tan, Z., A 3D point cloud reconstruction method, 2019 IEEE 9th Annu. Int. Conf. on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Suzhou, China, 2019, IEEE, 2019, pp. 1310–1315. https://doi.org/10.1109/cyber46603.2019.9066630

  27. Liu, Yi. and Zhong, R., Buildings and terrain of urban area point cloud segmentation based on PCL, IOP Conf. Ser.: Earth Environ. Sci., 2014, vol. 17, no. 1, p. 012238. https://doi.org/10.1088/1755-1315/17/1/012238

  28. Miknis, M., Davies, R., Plassmann, P., and Ware, A., Near real-time point cloud processing using the PCL, 2015 Int. Conf. on Systems, Signals and Image Processing (IWSSIP), London, 2015, IEEE, 2015, pp. 153–156. https://doi.org/10.1109/iwssip.2015.7314200

  29. Moreno, C. and Li, M., A comparative study of filtering methods for point clouds in real-time video streaming, Proc. World Congress on Engineering and Computer Science, San Francisco, 2016, vol. 1, pp. 388–393.

  30. Xu, Yu., Tong, X., and Stilla, U., Voxel-based representation of 3D point clouds: Methods, applications, and its potential use in the construction industry, Autom. Construction, 2021, vol. 126, p. 103675. https://doi.org/10.1016/j.autcon.2021.103675

    Article  Google Scholar 

  31. Shi, X., Liu, T., and Han, X., Improved iterative closest point (ICP) 3D point cloud registration algorithm based on point cloud filtering and adaptive fireworks for coarse registration, Int. J. Remote Sensing, 2020, vol. 41, no. 8, pp. 3197–3220. https://doi.org/10.1080/01431161.2019.1701211

    Article  Google Scholar 

Download references

Funding

This study was supported by the Shandong Provincial Natural Science Foundation (project no. ZR2021MF017); the Shandong Provincial Natural Science Foundation (project no. ZR2020MF147); the SDUT&Zibo City Integration Development Project (project no. 2020SNPT0055); The National Natural Science Foundation of China (project nos. 61502282 and 61902222); and the Taishan Scholars Program of Shandong Province (project no. tsqn201909109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhouqi Liu, Wang, L., Huang, J. et al. An Effective Denoising Method for the Point Cloud of Trees Based on the Hybrid Filtering Scheme. Aut. Control Comp. Sci. 57, 504–513 (2023). https://doi.org/10.3103/S0146411623050073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411623050073

Keywords:

Navigation