Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 8, 2023

Synthesis, structures and photophysical properties of two new Cu(I) complexes

  • Xiaojuan Sun and Zhiqiang Wang EMAIL logo

Abstract

Two cationic heteroleptic four-coordinate Cu(I) complexes were successfully synthesized and characterized by 1H NMR, 13C NMR, 31P NMR spectroscopy and mass spectrometry. The crystal structures of the complexes have been determined by single-crystal X-ray diffraction. UV/Visible absorption spectra of these complexes show ligand-centered π-π* and charge transfer transitions. In the solid state the complexes show intense emissions with microsecond-scale lifetime and relatively high efficiency at room temperature. The photophysical behavior at T = 298 and 77 K indicates that the emissions of these complexes are thermally activated delayed fluorescence mixed with phosphorescence.


Corresponding author: Zhiqiang Wang, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China, E-mail:

Acknowledgments

We thank Jiange Wang for the single-crystal structure determinations.

  1. Research ethics: Not applicable.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Competing interests: The authors declare no conflict of interest regarding this article.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Pashaei, B., Karimi, S., Shahroosvand, H., Abbasi, P., Pilkington, M., Bartolotta, A., Fresta, E., Fernandez-Cestau, J., Costa, R. D., Bonaccorso, F. Chem. Soc. Rev. 2019, 48, 5033–5139; https://doi.org/10.1039/c8cs00075a.Search in Google Scholar PubMed

2. Li, G., Zhu, D., Wang, X., Su, Z., Bryce, M. R. Chem. Soc. Rev. 2020, 49, 765–838.10.1039/C8CS00660ASearch in Google Scholar PubMed

3. Amouri, H. Chem. Rev. 2023, 123, 230–270; https://doi.org/10.1021/acs.chemrev.2c00206.Search in Google Scholar PubMed

4. Lu, G., Wu, R., Li, N., Wang, X., Zhou, L., Yang, C. J. Mater. Chem. C 2022, 10, 17303–17308.10.1039/D2TC02808ESearch in Google Scholar

5. Li, W., Miao, T., Wang, B., Liu, J., Lü, X., Fu, G., Feng, W., Wong, W.-Y. J. Mater. Chem. C 2021, 9, 8337–8344; https://doi.org/10.1039/d1tc01977e.Search in Google Scholar

6. Ma, H., Shen, K., Wu, Y., Xia, F., Yu, F., Sun, Z., Qian, C., Peng, Q., Zhang, H.-H., You, C., Xie, G., Hang, X.-C., Huang, W. Mater. Chem. Front. 2019, 3, 2448–2454; https://doi.org/10.1039/c9qm00347a.Search in Google Scholar

7. Chen, Y., Qian, C., Qin, K., Li, H., Shi, X., Lu, Z., Ma, H., Qin, T., Hang, X.-C., Huang, W. ACS Appl. Mater. Interfaces 2021, 13, 52833–52839; https://doi.org/10.1021/acsami.1c13843.Search in Google Scholar PubMed

8. Shafikov, M. Z., Daniels, R., Kozhevnikov, V. N. J. Phys. Chem. Lett. 2019, 10, 7015–7024; https://doi.org/10.1021/acs.jpclett.9b03002.Search in Google Scholar PubMed

9. Zhang, M., Zhang, S.-W., Wu, C., Li, W., Wu, Y., Yang, C., Meng, Z., Xu, W., Tang, M.-C., Xie, R., Meng, H., Wei, G. ACS Appl. Mater. Interfaces 2022, 14, 1546–1556; https://doi.org/10.1021/acsami.1c19127.Search in Google Scholar PubMed

10. Li, G., Zhao, X., Fleetham, T., Chen, Q., Zhan, F., Zheng, J., Yang, Y.-F., Lou, W., Yang, Y., Fang, K., Shao, Z., Zhang, Q., She, Y. Chem. Mater. 2020, 32, 537–548; https://doi.org/10.1021/acs.chemmater.9b04263.Search in Google Scholar

11. Sun, Y., Chen, C., Liu, B., Guo, Y., Feng, Z., Zhou, G., Chen, Z., Yang, X. J. Mater. Chem. C 2021, 9, 5373–5378; https://doi.org/10.1039/d0tc05965j.Search in Google Scholar

12. Li, X., Zang, C.-X., Gao, Y., Wen, L.-L., Shao, K.-Z., Ding, G.-Y., Shan, G.-G., Xie, W.-F., Su, Z.-M. Inorg. Chem. 2022, 61, 20299–20307; https://doi.org/10.1021/acs.inorgchem.2c02702.Search in Google Scholar PubMed

13. Park, H. J., Jang, J.-H., Lee, J.-H., Hwang, D.-H. ACS Appl. Mater. Interfaces 2022, 14, 34901–34908; https://doi.org/10.1021/acsami.2c06891.Search in Google Scholar PubMed

14. Kim, S.-Y., Kim, J.-H., Lee, S., Yun, B.-S., Son, H.-J., Kang, S. O. Inorg. Chem. 2022, 61, 18554–18567; https://doi.org/10.1021/acs.inorgchem.2c02890.Search in Google Scholar PubMed

15. Zhu, L., Sha, C., Lv, A., Xie, W., Shen, K., Chen, Y., Xie, G., Ma, H., Li, H., Hang, X.-C. Inorg. Chem. 2022, 61, 10402–10409; https://doi.org/10.1021/acs.inorgchem.2c01063.Search in Google Scholar PubMed

16. Liao, X.-J., Zhu, J.-J., Yuan, L., Yan, Z.-P., Luo, X.-F., Zhang, Y.-P., Lu, J.-J., Zheng, Y.-X. J. Mater. Chem. C 2021, 9, 8226–8232, https://doi.org/10.1039/d1tc01449h.Search in Google Scholar

17. Shen, Y., Kong, X., Yang, F., Bian, H.-D., Cheng, G., Cook, T. R., Zhang, Y. Inorg. Chem. 2022, 61, 16707–16717; https://doi.org/10.1021/acs.inorgchem.2c02467.Search in Google Scholar PubMed

18. Ou, C., Qiu, Y.-C., Cao, C., Zhang, H., Qin, J., Tu, Z.-L., Shi, J., Wu, Z.-G. Inorg. Chem. Front. 2023, 10, 1018–1026, https://doi.org/10.1039/d2qi02261c.Search in Google Scholar

19. Barman, D., Narang, K., Gogoi, R., Barman, D., Lyer, P. K. J. Mater. Chem. C 2022, 10, 8536–8583.10.1039/D1TC05906HSearch in Google Scholar

20. Shi, Y.-Z., Wu, H., Wang, K., Yu, J., Ou, X.-M., Zhang, X.-H. Chem. Sci. 2022, 13, 3625–3651.10.1039/D1SC07180GSearch in Google Scholar PubMed PubMed Central

21. Zhou, Z., Xie, X., Sun, Z., Wang, X., An, Z., Huang, W. J. Mater. Chem. C 2023, 11, 3143–3161; https://doi.org/10.1039/d2tc05256c.Search in Google Scholar

22. Chen, L., Chen, W.-C., Yang, Z., Tan, J.-H., Ji, S., Zhang, H.-L., Huo, Y., Lee, C.-S. J. Mater. Chem. C 2021, 9, 17233–17264, https://doi.org/10.1039/d1tc04184c.Search in Google Scholar

23. Li, Q., Wang, J., Wu, Y., Zhao, F., He, H., Wang, Y. Polyhedron 2022, 218, 115785; https://doi.org/10.1016/j.poly.2022.115785.Search in Google Scholar

24. Olaru, M., Rychagova, E., Ketkov, S., Hynkarenko, Y., Yakunin, S., Kovalenko, M. V., Yablonskiy, A., Andreev, B., Kleemiss, F., Beckmann, J., Vogt, M. J. Am. Chem. Soc. 2020, 142, 373–381; https://doi.org/10.1021/jacs.9b10829.Search in Google Scholar PubMed

25. Xu, K., Chen, B.-L., Yang, F., Liu, L., Zhong, X.-X., Wang, L., Zhu, X.-J., Li, F.-B., Wong, W.-Y., Qin, H.-M. Inorg. Chem. 2021, 60, 4841–4851; https://doi.org/10.1021/acs.inorgchem.0c03755.Search in Google Scholar PubMed

26. Yu, P., Peng, D., He, L.-H., Chen, J.-L., Wang, J.-Y., Liu, S.-J., Wen, H.-R. Inorg. Chem. 2022, 61, 254–264; https://doi.org/10.1021/acs.inorgchem.1c02807.Search in Google Scholar PubMed

27. Farias, G., Salla, C. A. M., Heying, R. S., Bortoluzzi, A. J., Curcio, S. F., Cazati, T., dos Santos, P. L., Monkman, A. P., de Souza, B., Bechtold, I. H. J. Mater. Chem. C 2020, 8, 14595–14604; https://doi.org/10.1039/d0tc03660a.Search in Google Scholar

28. Meyer, M., Mardegan, L., Tordera, D., Prescimone, A., Sessolo, M., Bolink, H. J., Constable, E. C., Housecroft, C. E. Dalton Trans. 2021, 50, 17920–17934; https://doi.org/10.1039/d1dt03239a.Search in Google Scholar PubMed PubMed Central

29. Huang, C.-H., Yang, M., Chen, X.-L., Lu, C.-Z. Dalton Trans. 2021, 50, 5171–5176; https://doi.org/10.1039/d0dt04424e.Search in Google Scholar PubMed

30. He, T.-F., Ren, A.-M., Chen, Y.-N., Hao, X.-L., Shen, L., Zhang, B.-H., Wu, T.-S., Zhang, H.-X., Zou, L.-Y. Inorg. Chem. 2020, 59, 12039–12053; https://doi.org/10.1021/acs.inorgchem.0c00980.Search in Google Scholar PubMed

31. Yamazaki, Y., Tsukuda, T., Furukawa, S., Dairiki, A., Sawamura, S., Tsubomura, T. Inorg. Chem. 2020, 59, 12375–12384; https://doi.org/10.1021/acs.inorgchem.0c01445.Search in Google Scholar PubMed

32. Housecroft, C. E., Constable, E. C. J. Mater. Chem. C 2022, 10, 4456–4482; https://doi.org/10.1039/d1tc04028f.Search in Google Scholar PubMed PubMed Central

33. Sandoval-Pauker, C., Santander-Nelli, M., Dreyse, P. RSC Adv. 2022, 12, 10653–10674; https://doi.org/10.1039/d1ra08082b.Search in Google Scholar PubMed PubMed Central

34. Li, C., Mackenzie, C. F. R., Said, S. A., Pal, A. K., Haghighatbin, M. A., Babaei, A., Sessolo, M., Cordes, D. B., Slawin, A. M. Z., Kamer, P. C. J., Bolink, H. J., Hogan, C. F., Zysman-Colman E. Inorg. Chem. 2021, 60, 10323–10339; https://doi.org/10.1021/acs.inorgchem.1c00804.Search in Google Scholar PubMed

35. Klein, M., Rau, N., Wende, M., Sundermeyer, J., Cheng, G., Che, C.-M., Schinabeck, A., Yersin, H. Chem. Mater. 2020, 32, 10365–10382; https://doi.org/10.1021/acs.chemmater.0c02683.Search in Google Scholar

36. Li, X., Zhang, J., Zhao, Z., Yu, X., Li, P., Yao, Y., Liu, Z., Jin, Q., Bian, Z., Lu, Z., Huang, C. ACS Appl. Mater. Interfaces 2019, 11, 3262–3270; https://doi.org/10.1021/acsami.8b15897.Search in Google Scholar PubMed

37. Wang, Z., Zheng, C., Wang, W., Xu, C., Ji, B., Zhang, X. Inorg. Chem. 2016, 55, 2157–2164; https://doi.org/10.1021/acs.inorgchem.5b02546.Search in Google Scholar PubMed

38. Wang, Z., Sun, X., Fu, W., Xu, C., Ji, B. J. Lumin. 2018, 204, 618–625; https://doi.org/10.1016/j.jlumin.2018.08.064.Search in Google Scholar

39. Wang, Z., Sun, X., Xu, C., Ji, B. Front. Chem. 2019, 7, 422; https://doi.org/10.3389/fchem.2019.00422.Search in Google Scholar PubMed PubMed Central

40. Lou, X., Tian, Y., Wang, Z. Z. Naturforsch. 2022, 77b, 673–679.10.1515/znb-2022-0092Search in Google Scholar

41. Cai, X., Ma, T., Ding, D., Wang, Z., Li, M., Chen, S., Ma, Z., Teng, S., Du, Y., Zhang, T., Xu, C. Z. Anorg. Allg. Chem. 2021, 647, 1277–1283; https://doi.org/10.1002/zaac.202000470.Search in Google Scholar

42. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A.Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J. Gaussian 09, (Revision D.01); Gaussian, Inc.: Wallingford CT (USA), 2013.Search in Google Scholar

43. Sheldrick, G. M. Sadabs, Program for Empirical Absorption Correction of Area Detector Data; University of Göttingen: Göttingen (Germany), 1994.Search in Google Scholar

44. Sheldrick, G. M. Shelxs-97, Program for the Solution of Crystal Structures; University of Göttingen: Göttingen (Germany), 1997.Search in Google Scholar

45. Sheldrick, G. M. Shelxl-97, Program for the Refinement of Crystal Structures; University of Göttingen: Göttingen (Germany), 1997.Search in Google Scholar

46. Armaroli, N. Chem. Soc. Rev. 2001, 30, 113–124; https://doi.org/10.1039/b000703j.Search in Google Scholar

47. Lin, L., Chen, D.-H., Yu, R., Chen, X.-L., Zhu, W.-J., Liang, D., Chang, J.-F., Zhang, Q., Lu, C.-Z. J. Mater. Chem. C 2017, 5, 4495–4504; https://doi.org/10.1039/c7tc00443e.Search in Google Scholar

48. Leitl, M. J., Krylova, V. A., Djurovich, P. I., Thompson, M. E., Yersin, H. J. Am. Chem. Soc. 2014, 136, 16032–16038; https://doi.org/10.1021/ja508155x.Search in Google Scholar PubMed

49. Hofbeck, T., Monkowius, U., Yersin, H. J. Am. Chem. Soc. 2015, 137, 399–404; https://doi.org/10.1021/ja5109672.Search in Google Scholar PubMed

Received: 2023-06-13
Accepted: 2023-08-28
Published Online: 2023-11-08
Published in Print: 2023-11-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2023-0046/html
Scroll to top button