Skip to main content
Log in

A review of smoothed particle hydrodynamics

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

Smoothed particle hydrodynamics (SPH) is an evolving computational fluid dynamics (CFD) method. With time, it illustrates a great extent of its capabilities to be considered a practical numerical tool for modeling fluid flow in porous media. It is a free mesh particle-based method benefiting from a Lagrangian nature. This feature makes it a suitable candidate for treating the fluid flow within complex geometries on a mesoscale. A sequential approach is used in the various modifications of SPH. Thereby, the preparation time of models in SPH will be less than those made by using grid-based models. This method offers attractive privileges for dealing with moving boundaries and acquiring the time history of the field variables. In this paper, the basic concepts behind SPH are first introduced. Subsequently, the various discretization approaches and considerations for SPH are reviewed. Its application in the presence of solid boundaries and multiphase contacts is then discussed. Following that, the implementation of inflow/outflow boundaries and miscibility conditions are explored. The considerations for thermal effects and its application in porous media are also presented. The techniques for simulating different fluid types and shortcomings within SPH are eventually described. It is shown that SPH has a significant potential for modeling the fluid behavior on mesoscale although it is computationally expensive. The approximation of second- and higher-order derivatives by using SPH could become erroneous. The stability and consistency of SPH vary from one case to another. It implies that each problem requires a particular modification of SPH. There is still no unified version of SPH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gerhart AL, Hochstein JI, Gerhart PM (2020) Munson, young and okiishi’s fundamentals of fluid mechanics. Wiley, ISBN 9781119597308

  2. Streeter VL, Wylie EB, Bedford KW (1998) Fluid mechanics. Civil engineering series. WCB/McGraw Hill, ISBN 9780070625372

  3. Filho CADF (2018) Smoothed particle hydrodynamics: fundamentals and basic applications in continuum mechanics. Springer International Publishing, ISBN 9783030007737

  4. Liu G-R, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World scientific, ISBN 9812564403

  5. Martys NS (1994) Fractal growth in hydrodynamic dispersion through random porous media. Phys Rev E 50:335

    Article  Google Scholar 

  6. Meakin P, Rage T, Wagner G, Feder J, Jøssang T (1997) Simulations of one-and two-phase flow in fractures. In: Fluid flow and transport in rocks, pp 251–261. Springer

  7. Tartakovsky AM, Meakin P, Scheibe TD, Wood BD (2007) A smoothed particle hydrodynamics model for reactive transport and mineral precipitation in porous and fractured porous media. Water Resour Res 43:1–18. https://doi.org/10.1029/2005WR004770

    Article  Google Scholar 

  8. Rivet J-P,.Boon JP (2001) Lattice gas hydrodynamics, ISBN 0521419441

  9. Rothman DH, Zaleski S (2004) Lattice-gas cellular automata, ISBN 0521607604

  10. Succi S (2001) The Lattice Boltzmann equation: for fluid dynamics and beyond. Oxford university press, ISBN 0198503989

  11. Pan C, Hilpert M, Miller CT (2004) Lattice‐Boltzmann simulation of two‐phase flow in porous media. Water Resour Res 40

  12. Osborn WR, Orlandini E, Swift MR, Yeomans JM, Banavar JR (1995) Lattice Boltzmann study of hydrodynamic spinodal decomposition. Phys Rev Lett 75:4031

    Article  Google Scholar 

  13. Hoogerbrugge PJ, Koelman J (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. EPL Europhys Lett 19:155

    Article  Google Scholar 

  14. Randles PW, Libersky LD (1996) Smoothed particle hydrodynamics: some recent improvements and applications. Comput Methods Appl Mech Eng 139:375–408

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu MB, Liu G (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17:25–76

    Article  MathSciNet  MATH  Google Scholar 

  16. Hoover WG, Pierce TG, Hoover CG, Shugart JO, Stein CM, Edwards AL (1994) Molecular dynamics, smoothed-particle applied mechanics, and irreversibility. Comput Math Appl 28:155–174

    Article  MATH  Google Scholar 

  17. Posch HA, Hoover WG, Kum O (1995) Steady-State shear flows via nonequilibrium molecular dynamics and smooth-particle applied mechanics. Phys Rev E 52:1711

    Article  Google Scholar 

  18. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical Stars. Mon Not R Astron Soc 181:375–389

    Article  MATH  Google Scholar 

  19. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J, vol 82, p 1013–1024. 1977, 82, 1013–1024

  20. Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30:543–574

    Article  Google Scholar 

  21. Benz W, Asphaug E (1995) Simulations of brittle solids using smooth particle hydrodynamics. Comput Phys Commun 87:253–265

    Article  MATH  Google Scholar 

  22. Mandell DA, Wingate CA, Schwalbe LA (1996) Simulation of a ceramic impact experiment using the SPHINX smooth particle hydrodynamics code. Los Alamos National Lab.(LANL), Los Alamos, NM (United States)

  23. Randles PW, Libersky LD, Carney TC, Sandstrom FW (1996) SPH simulation of fragmentation in the MK82 Bomb. In: Proceedings of the AIP conference proceedings. American Institute of Physics, vol 370, pp 331–334

  24. Lucy LB (1997) A numerical approach to testing the fission hypothesis. Astron J 82:1013–1024

    Article  Google Scholar 

  25. Liu MB, Liu GR, Zong Z, Lam KY (2003) Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology. Comput Fluids 32:305–322

    Article  MATH  Google Scholar 

  26. Morris JP, Fox PJ, Zhu Y (1997) Modeling low Reynolds number incompressible flows using SPH. J Comput Phys 136:214–226

    Article  MATH  Google Scholar 

  27. Zhu Y, Fox PJ (2002) Simulation of pore-scale dispersion in periodic porous media using smoothed particle hydrodynamics. J Comput Phys 182:622–645

    Article  MATH  Google Scholar 

  28. Zhu Y, Fox PJ (2001) Smoothed particle hydrodynamics model for diffusion through porous media. Transp Porous Media 43:441–471

    Article  Google Scholar 

  29. Colagrossi A, Landrini M (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J Comput Phys 191:448–475

    Article  MATH  Google Scholar 

  30. Hoover WG (1998) Isomorphism linking smooth particles and embedded atoms. Phys A Stat Mech Appl 260:244–254

    Article  Google Scholar 

  31. Tartakovsky AM, Meakin P (2005) A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional Rayleigh-Taylor instability. J Comput Phys 207:610–624

    Article  MATH  Google Scholar 

  32. Lahooti M, Pishevar A, Saidi MS (2011) A novel 2D algorithm for fluid solid interaction based on the smoothed particle hydrodynamics (SPH) method. Sci Iran 18:358–367

    Article  Google Scholar 

  33. Amini Y, Emdad H, Farid M (2011) A new model to solve fluid–hypo-elastic solid interaction using the smoothed particle hydrodynamics (SPH) method. Eur J Mech 30:184–194

    Article  MATH  Google Scholar 

  34. Liu MB, Shao JR, Li HQ (2014) An SPH model for free surface flows with moving rigid objects. Int J Numer Methods Fluids 74:684–697

    Article  MathSciNet  MATH  Google Scholar 

  35. Xiong Q, Deng L, Wang W, Ge W (2011) SPH method for two-fluid modeling of particle-fluid fluidization. Chem Eng Sci 66:1859–1865

    Article  Google Scholar 

  36. Deng L, Liu Y, Wang W, Ge W, Li J (2013) A two-fluid smoothed particle hydrodynamics (TF-SPH) method for gas-solid fluidization. Chem Eng Sci 99:89–101

    Article  Google Scholar 

  37. Omang MG, Trulsen JK (2014) Multi-phase shock simulations with smoothed particle hydrodynamics (SPH). Shock Waves 24:521–536

    Article  Google Scholar 

  38. Müller M, Solenthaler B, Keiser R, Gross M (2005) Particle-based fluid-fluid interaction. In: Proceedings of the proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp 237–244

  39. Tartakovsky AM, Meakin P (2006) Pore scale modeling of immiscible and miscible fluid flows using smoothed particle hydrodynamics. Adv Water Resour 29:1464–1478. https://doi.org/10.1016/j.advwatres.2005.11.014

    Article  Google Scholar 

  40. Randles PW, Libersky LD (2000) Normalized SPH with stress points. Int J Numer Methods Eng 48:1445–1462

    Article  MATH  Google Scholar 

  41. Libersky LD, Petschek AG, Carney TC, Hipp JR, Allahdadi FA (1993) High strain lagrangian hydrodynamics: a three-dimensional SPH Code for dynamic material response. J Comput Phys 109:67–75

    Article  MATH  Google Scholar 

  42. Monaghan JJ, Kocharyan A (1995) SPH simulation of multi-phase flow. Comput Phys Commun 87:225–235. https://doi.org/10.1016/0010-4655(94)00174-Z

    Article  MATH  Google Scholar 

  43. Sawley M, Cleary P, Ha J (1999) Modelling of flow in porous media and resin transfer moulding using smoothed particle hydrodynamics

  44. Zhang M (2007) Smoothed particle hydrodynamics in materials processing: code development and applications. State University of New York at Stony Brook, ISBN 0549444009

  45. Ye T, Pan D, Huang C, Liu M (2019) Smoothed particle hydrodynamics (SPH) for complex fluid flows: recent developments in methodology and applications. Phys Fluids 31:11301

    Article  Google Scholar 

  46. Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225

    Article  MATH  Google Scholar 

  47. Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114:146–159

    Article  MATH  Google Scholar 

  48. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110:399–406

    Article  MATH  Google Scholar 

  49. Tartakovsky A, Meakin P (2005) Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Phys Rev E Stat Nonlinear Soft Matter Phys 72:1–9. https://doi.org/10.1103/PhysRevE.72.026301

    Article  Google Scholar 

  50. Holmes DW, Williams JR, Tilke P (2011) Smooth particle hydrodynamics simulations of low Reynolds number flows through porous media. Int J Numer Anal Methods Geomech 35:419–437

    Article  MATH  Google Scholar 

  51. Breinlinger T, Polfer P, Hashibon A, Kraft T (2013) Surface tension and wetting effects with smoothed particle hydrodynamics. J Comput Phys 243:14–27

    Article  MATH  Google Scholar 

  52. Maggi F, Alonso-Marroquin F (2012) Multiphase capillary flows. Int J Multiph Flow 42:62–73

    Article  Google Scholar 

  53. Maggi F (2012) Multiphase Capillary rise of multicomponent miscible liquids. Colloids Surf A Physicochem Eng Asp 415:119–124

    Article  Google Scholar 

  54. Nojabaei B, Siripatrachai N, Johns RT, Ertekin T (2016) Effect of large gas-oil capillary pressure on production: a compositionally-extended black oil formulation. J Pet Sci Eng 147:317–329

    Article  Google Scholar 

  55. Li L, Shen L, Nguyen GD, El-Zein A, Maggi F (2018) A smoothed particle hydrodynamics framework for modelling multiphase interactions at meso-scale. Comput Mech 62:1071–1085

    Article  MathSciNet  MATH  Google Scholar 

  56. Szewc K, Taniere A, Pozorski J, Minier J-P (2012) A study on application of smoothed particle hydrodynamics to multi-phase flows. Int J Nonlinear Sci Numer Simul 13:383–395

    Article  MathSciNet  MATH  Google Scholar 

  57. Shutov A, Klyuchantsev V (2019) On the application of SPH to solid mechanics. In Proceedings of the journal of physics: conference series, vol 1268, p 12077. IOP Publishing

  58. Altomare C, Domínguez JM, Fourtakas G (2022) Latest developments and application of SPH using DualSPHysics. Comput Part Mech 9:863–866

    Article  Google Scholar 

  59. Xu F, Wang J, Yang Y, Wang L, Dai Z, Han R (2023) On methodology and application of smoothed particle hydrodynamics in fluid. Solid Biomech Acta Mech Sin 39:1–36

    MathSciNet  Google Scholar 

  60. Palyanov A, Khayrulin S, Larson SD (2016) Application of smoothed particle hydrodynamics to modeling mechanisms of biological tissue. Adv Eng Softw 98:1–11

    Article  Google Scholar 

  61. Mocz P (2011) Smoothed particle hydrodynamics: theory, implementation, and application to toy stars

  62. Cleary PW, Prakash M, Ha J, Stokes N, Scott C (2007) Smooth particle hydrodynamics: status and future potential. Prog Comput Fluid Dyn Int J 7:70–90

    Article  MathSciNet  MATH  Google Scholar 

  63. Monaghan JJ, Gingold RA (1983) Shock simulation by the particle method SPH. J Comput Phys 52:374–389. https://doi.org/10.1016/0021-9991(83)90036-0

    Article  MATH  Google Scholar 

  64. Lo EYM, Shao S (2002) Simulation of near-shore solitary wave mechanics by an incompressible SPH method. Appl Ocean Res 24:275–286

    Article  Google Scholar 

  65. Shao S, Lo EYM (2003) Incompressible SPH method for simulating newtonian and non-newtonian flows with a free surface. Adv Water Resour 26:787–800

    Article  Google Scholar 

  66. Grenier N, Antuono M, Colagrossi A, Le Touzé D, Alessandrini B (2009) An Hamiltonian interface SPH formulation for multi-fluid and free surface flows. J Comput Phys 228:8380–8393

    Article  MathSciNet  MATH  Google Scholar 

  67. Hu XY, Adams NA (2007) An incompressible multi-phase SPH method. J Comput Phys 227:264–278

    Article  MATH  Google Scholar 

  68. Lind SJ, Rogers BD, Stansby PK (2020) Review of smoothed particle hydrodynamics: towards converged lagrangian flow modelling. Proc R Soc A 476:20190801

    Article  MathSciNet  MATH  Google Scholar 

  69. Ma QW, Zhou Y, Yan S (2016) A review on approaches to solving poisson’s equation in projection-based meshless methods for modelling strongly nonlinear water waves. J Ocean Eng Mar Energy 2:279–299

    Article  Google Scholar 

  70. Shadloo MS, Oger G, Le Touzé D (2016) Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: motivations, current state, and challenges. Comput Fluids 136:11–34

    Article  MathSciNet  MATH  Google Scholar 

  71. Gotoh H, Khayyer A (2016) Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering. J Ocean Eng Mar Energy 2:251–278

    Article  Google Scholar 

  72. Violeau D, Rogers BD (2016) Smoothed particle hydrodynamics (SPH) for free-surface flows: past present and future. J Hydraul Res 54:1–26

    Article  Google Scholar 

  73. Tartakovsky AM, Meakin P (2005) Simulation of unsaturated flow in complex fractures using smoothed particle hydrodynamics. Vadose Zone J 4:848–855

    Article  Google Scholar 

  74. Morris JP (2000) Simulating surface tension with smoothed particle hydrodynamics. Int J Numer Methods Fluids 33:333–353

    Article  MATH  Google Scholar 

  75. Nugent S, Posch HA (2000) Liquid drops and surface tension with smoothed particle applied mechanics. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top 62:4968–4975. https://doi.org/10.1103/PhysRevE.62.4968

    Article  Google Scholar 

  76. Johnson GR, Stryk RA, Beissel SR (1996) SPH for high velocity impact computations. Comput Methods Appl Mech Eng 139:347–373

    Article  MATH  Google Scholar 

  77. Libersky LD, Petschek AG (1991) Smooth particle hydrodynamics with strength of materials. In: Advances in the free-Lagrange method including contributions on adaptive gridding and the smooth particle hydrodynamics method, pp 248–257. Springer

  78. Liu MB, Liu GR, Lam KY (2003) Constructing smoothing functions in smoothed particle hydrodynamics with applications. J Comput Appl Math 155:263–284

    Article  MathSciNet  MATH  Google Scholar 

  79. Violeau D (2012) Fluid mechanics and the SPH method: theory and applications. OUP Oxford, ISBN 9780199655526

  80. Swegle JW, Hicks DL, Attaway SW (1995) Smoothed particle hydrodynamics stability analysis. J Comput Phys 116:123–134

    Article  MathSciNet  MATH  Google Scholar 

  81. Morris JP (1996) Analysis of smoothed particle hydrodynamics with applications. Monash University Australia

  82. Fulk DA, Quinn DW (1996) An analysis of 1-D smoothed particle hydrodynamics kernels. J Comput Phys 126:165–180

    Article  MATH  Google Scholar 

  83. Yang XF, Peng SL, Liu MB (2014) A new kernel function for SPH with applications to free surface flows. Appl Math Model 38:3822–3833. https://doi.org/10.1016/j.apm.2013.12.001

    Article  MathSciNet  MATH  Google Scholar 

  84. Monaghan JJ (2000) SPH without a tensile instability. J Comput Phys 159:290–311

    Article  MATH  Google Scholar 

  85. Dilts GA (1999) Moving-least-squares-particle Hydrodynamics—I. Consistency and stability. Int J Numer Methods Eng 44:1115–1155

    Article  MathSciNet  MATH  Google Scholar 

  86. Bonet J, Kulasegaram S (2000) Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations. Int J Numer Methods Eng 47:1189–1214

    Article  MATH  Google Scholar 

  87. Swegle JW, Attaway SW, Heinstein MW, Mello FJ, Hicks DL (1994) An analysis of smoothed particle hydrodynamics. Sandia National Labs., Albuquerque, NM (United States)

  88. Hu H, Chen J, Hu W (2011) Error analysis of collocation method based on reproducing kernel approximation. Numer Methods Partial Differ Equ 27:554–580

    Article  MathSciNet  MATH  Google Scholar 

  89. Aluru N (2000) A point collocation method based on reproducing kernel approximations. Int J Numer Methods Eng 47:1083–1121

    Article  MATH  Google Scholar 

  90. Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4:389–396. https://doi.org/10.1007/BF02123482

    Article  MathSciNet  MATH  Google Scholar 

  91. Schaback R (2011) The missing wendland functions. Adv Comput Math 34:67–81. https://doi.org/10.1007/s10444-009-9142-7

    Article  MathSciNet  MATH  Google Scholar 

  92. Dehnen W, Aly H (2012) Improving convergence in smoothed particle hydrodynamics simulations without pairing instability. Mon Not R Astron Soc 425:1068–1082. https://doi.org/10.1111/j.1365-2966.2012.21439.x

    Article  Google Scholar 

  93. Yang X, Liu M, Peng S (2014) Smoothed particle hydrodynamics modeling of viscous liquid drop without tensile instability. Comput Fluids 92:199–208

    Article  MathSciNet  MATH  Google Scholar 

  94. Ha J (2004) A numerical study of the application of radial basis function and generalised smoothed particle hydrodynamics to CFD. In: Proceedings of the 15th Australasian fluid mechanics conference. The University of Sydney, Sydney, Australia

  95. Hongbin J, Xin D (2005) On criterions for smoothed particle hydrodynamics kernels in stable field. J Comput Phys 202:699–709

    Article  MATH  Google Scholar 

  96. Nugent S, Posch HA (2000) Liquid drops and surface tension with smoothed particle applied mechanics 62:4968–4975

  97. Sigalotti LDG, Troconis J, Sira E, Peña-Polo F, Klapp J (2014) Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops using smoothed particle hydrodynamics. Phys Rev E Stat Nonlinear Soft Matter Phys. https://doi.org/10.1103/PhysRevE.90.013021

    Article  Google Scholar 

  98. Charles A, Daivis P (2009) Smooth particle methods for vapour liquid coexistence. In: 18th World IMACS Congr. MODSIM 2009—Int. Congr. Model. Simul. Interfacing Model. Simul. with Math. Comput. Sci. Proc., pp 303–309

  99. Evrard AE (1988) Beyond N-body-3D cosmological gas dynamics. Mon Not R Astron Soc 235:911–934

    Article  MATH  Google Scholar 

  100. Monaghan JJ (1997) SPH and Riemann solvers. J Comput Phys 136:298–307

    Article  MathSciNet  MATH  Google Scholar 

  101. Noh WF (1987) Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux. J Comput Phys 72:78–120

    Article  MATH  Google Scholar 

  102. Fang HS, Bao K, Wei JA, Zhang H, Wu EH, Zheng LL (2009) Simulations of droplet spreading and solidification using an improved SPH model. Numer Heat Transf Part A Appl 55:124–143. https://doi.org/10.1080/10407780802603139

    Article  Google Scholar 

  103. Xu R (2010) An improved incompressible smoothed particle hydrodynamics method and its application in free-surface simulations

  104. Xu R, Stansby P, Laurence D (2009) Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach. J Comput Phys 228:6703–6725

    Article  MathSciNet  MATH  Google Scholar 

  105. Nestor R, Basa M, Quinlan N (2008) Moving boundary problems in the finite volume particle method. In: Proceedings of the 3rd ERCOFTAC SPHERIC workshop on SPH applications, Switzerland, Lausanne

  106. Shadloo MS, Zainali A, Sadek SH, Yildiz M (2011) Improved incompressible smoothed particle hydrodynamics method for simulating flow around bluff bodies. Comput Methods Appl Mech Eng 200:1008–1020

    Article  MathSciNet  MATH  Google Scholar 

  107. Shadloo MS, Zainali A, Yildiz M, Suleman A (2012) A robust weakly compressible SPH method and its comparison with an incompressible SPH. Int J Numer Methods Eng 89:939–956

    Article  MathSciNet  MATH  Google Scholar 

  108. Issa R, Lee ES, Violeau D, Laurence DR (2005) Incompressible separated flows simulations with the smoothed particle hydrodynamics gridless method. Int J Numer Methods Fluids 47:1101–1106

    Article  MATH  Google Scholar 

  109. Lee E-S, Moulinec C, Xu R, Violeau D, Laurence D, Stansby P (2008) Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method. J Comput Phys 227:8417–8436

    Article  MathSciNet  MATH  Google Scholar 

  110. Vacondio R, Rogers BD, Stansby PK, Mignosa P (2012) SPH modeling of shallow flow with open boundaries for practical flood simulation. J Hydraul Eng 138:530–541

    Article  Google Scholar 

  111. Xenakis AM, Lind SJ, Stansby PK, Rogers BD (2017) Landslides and tsunamis predicted by incompressible smoothed particle hydrodynamics (SPH) with application to the 1958 Lituya Bay event and idealized experiment. Proc R Soc A Math Phys Eng Sci 473:20160674

    MathSciNet  MATH  Google Scholar 

  112. Antuono M, Sun PN, Marrone S, Colagrossi A (2021) The δ-ALE-SPH model: an arbitrary Lagrangian-Eulerian framework for the δ-SPH model with particle shifting technique. Comput Fluids. https://doi.org/10.1016/j.compfluid.2020.104806

    Article  MathSciNet  MATH  Google Scholar 

  113. Domínguez JM, Crespo AJC, Gómez-Gesteira M (2013) Optimization strategies for CPU and GPU implementations of a smoothed particle hydrodynamics method. Comput Phys Commun 184:617–627

    Article  Google Scholar 

  114. Hérault A, Bilotta G, Dalrymple RA (2010) Sph on Gpu with Cuda. J Hydraul Res 48:74–79

    Article  Google Scholar 

  115. Crespo AJC, Rogers BD, Dominguez JM, Gomez-Gesteira M (2013) Simulating more than 1 Billion SPH particles using GPU hardware acceleration. In: Proceedings of the proc. 8th international SPHERIC workshop, pp 249–254

  116. Crespo AC, Dominguez JM, Barreiro A, Gómez-Gesteira M, Rogers BD (2011) GPUs, a new tool of acceleration in CFD: efficiency and reliability on smoothed particle hydrodynamics methods. PLoS ONE 6:e20685

    Article  Google Scholar 

  117. Mokos A, Rogers BD, Stansby PK, Domínguez JM (2015) Multi-phase SPH modelling of violent hydrodynamics on GPUs. Comput Phys Commun 196:304–316

    Article  Google Scholar 

  118. Mokos A, Rogers BD, Stansby PK (2017) A multi-phase particle shifting algorithm for SPH Simulations of violent hydrodynamics with a large number of particles. J Hydraul Res 55:143–162

    Article  Google Scholar 

  119. Lind SJ, Xu R, Stansby PK, Rogers BD (2012) Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. J Comput Phys 231:1499–1523

    Article  MathSciNet  MATH  Google Scholar 

  120. Vacondio R, Rogers BD, Stansby PK (2012) Smoothed particle hydrodynamics: approximate zero-consistent 2-D boundary conditions and still shallow-water tests. Int J Numer Methods Fluids 69:226–253

    Article  MathSciNet  MATH  Google Scholar 

  121. Tsuruta N, Khayyer A, Gotoh H (2015) Space potential particles to enhance the stability of projection-based particle methods. Int J Comut Fluid Dyn 29:100–119

    Article  MathSciNet  MATH  Google Scholar 

  122. Lind SJ, Stansby PK, Rogers BD (2016) Incompressible-compressible flows with a transient discontinuous interface using smoothed particle hydrodynamics (SPH). J Comput Phys 309:129–147

    Article  MathSciNet  MATH  Google Scholar 

  123. Shadloo MS, Zainali A, Yildiz M (2013) Simulation of single mode Rayleigh-Taylor instability by SPH method. Comput Mech 51:699–715

    Article  MathSciNet  MATH  Google Scholar 

  124. Krimi A, Jandaghian M, Shakibaeinia A (2020) A WCSPH particle shifting strategy for simulating violent free surface flows. Water 12:3189

    Article  Google Scholar 

  125. Sun PN, Colagrossi A, Marrone S, Zhang AM (2017) The Δplus-SPH model: simple procedures for a further improvement of the SPH scheme. Comput Methods Appl Mech Eng 315:25–49

    Article  MathSciNet  MATH  Google Scholar 

  126. Wang P-P, Meng Z-F, Zhang A-M, Ming F-R, Sun P-N (2019) Improved particle shifting technology and optimized free-surface detection method for free-surface flows in smoothed particle hydrodynamics. Comput Methods Appl Mech Eng 357:112580

    Article  MathSciNet  MATH  Google Scholar 

  127. Khayyer A, Gotoh H, Shao SD (2008) Corrected incompressible SPH method for accurate water-surface tracking in breaking waves. Coast Eng 55:236–250

    Article  Google Scholar 

  128. Shao S (2006) Incompressible SPH Simulation of wave breaking and overtopping with turbulence modelling. Int J Numer Methods Fluids 50:597–621

    Article  MathSciNet  MATH  Google Scholar 

  129. Khayyer A, Gotoh H, Shao S (2009) Enhanced predictions of wave impact pressure by improved incompressible SPH methods. Appl Ocean Res 31:111–131

    Article  Google Scholar 

  130. Schwaiger HF (2008) An implicit corrected SPH formulation for thermal diffusion with linear free surface boundary conditions. Int J Numer Methods Eng 75:647–671

    Article  MathSciNet  MATH  Google Scholar 

  131. Marrone S, Colagrossi A, Le Touzé D, Graziani G (2010) Fast free-surface detection and level-set function definition in SPH solvers. J Comput Phys 229:3652–3663

    Article  MATH  Google Scholar 

  132. Barecasco A, Terissa H, Naa CF (2013) Simple free-surface detection in two and three-dimensional sph solver. arXiv Prepr. arXiv1309.4290

  133. Jandaghian M, Shakibaeinia A (2020) An enhanced weakly-compressible MPS method for free-surface flows. Comput Methods Appl Mech Eng 360:112771

    Article  MathSciNet  MATH  Google Scholar 

  134. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20:1081–1106

    Article  MathSciNet  MATH  Google Scholar 

  135. Libersky LD, Petschek AG, Carney TC, Hipp JR, Allahdadi FA (1993) High strain Lagrangian hydrodynamics a three-dimensional SPH code for dynamic material response. J Comput Phys 109:67–75

    Article  MATH  Google Scholar 

  136. Randles PW, Libersky LD, Petschek AG (1999) On neighbors, derivatives, and viscosity in particle codes. Los Alamos National Lab.(LANL), Los Alamos, NM (United States)

  137. Dyka CT, Ingel RP (1995) An approach for tension instability in smoothed particle hydrodynamics (SPH). Comput Struct 57:573–580

    Article  MATH  Google Scholar 

  138. Meglicki Z (1995) Analysis and applications of smoothed particle magnetohydrodynamics

  139. Vignjevic R, Campbell J (2009) Review of development of the smooth particle hydrodynamics (SPH) method. In: Predictive modeling of dynamic processes, pp. 367–396. Springer

  140. Balsara DSV (1995) Neumann Stability analysis of smoothed particle hydrodynamics—suggestions for optimal algorithms. J Comput Phys 121:357–372

    Article  MATH  Google Scholar 

  141. Wen Y, Hicks DL, Swegle JW (1994) Stabilizing SPH with conservative smoothing. Sandia National Labs., Albuquerque, NM (United States)

  142. Guenther C, Hicks DL, Swegle JW (1994) Conservative smoothing versus artificial viscosity. Sandia National Labs., Albuquerque, NM (United States)

  143. Monaghan JJ (2002) SPH compressible turbulence. Mon Not R Astron Soc 335:843–852

    Article  Google Scholar 

  144. Swegle JW (2000) Conservation of momentum and tensile instability in particle methods. Sandia National Labs

  145. Beissel S, Belytschko T (1996) Nodal integration of the element-free galerkin method. Comput Methods Appl Mech Eng 139:49–74

    Article  MathSciNet  MATH  Google Scholar 

  146. Johnson GR, Beissel SR (1996) Normalized smoothing functions for SPH impact computations. Int J Numer Methods Eng 39:2725–2741

    Article  MATH  Google Scholar 

  147. Flebbe O, Muenzel S, Herold H, Riffert H, Ruder H (1994) Smoothed particle hydrodynamics: physical viscosity and the simulation of accretion disks. Astrophys J 431:754–760

    Article  Google Scholar 

  148. Sigalotti LDG, López H, Donoso A, Sira E, Klapp J (2006) A shock-capturing SPH scheme based on adaptive kernel estimation. J Comput Phys 212:124–149

    Article  MathSciNet  MATH  Google Scholar 

  149. Silverman BW (2018) Density estimation for statistics and data analysis. Routledge, ISBN 1315140918

  150. Hernquist L, Katz N (1989) TREESPH-a unification of SPH with the hierarchical tree method. Astrophys J Suppl Ser 70:419–446

    Article  Google Scholar 

  151. Bonet J, Lok T-S (1999) Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Comput Methods Appl Mech Eng 180:97–115

    Article  MathSciNet  MATH  Google Scholar 

  152. Sigalotti LDG, López H, Trujillo L (2009) An adaptive SPH method for strong shocks. J Comput Phys 228:5888–5907

    Article  MathSciNet  MATH  Google Scholar 

  153. Sigalotti LDG, López H (2008) Adaptive kernel estimation and SPH tensile instability. Comput Math Appl 55:23–50

    Article  MathSciNet  MATH  Google Scholar 

  154. López H, Sigalotti LDG (2006) Oscillation of viscous drops with smoothed particle hydrodynamics. Phys Rev E Stat Nonlinear Soft Matter Phys 73:1–12. https://doi.org/10.1103/PhysRevE.73.051201

    Article  Google Scholar 

  155. Rayleigh LO (1878) Lord on the instability the Instability of Jets. Proc Lond Math Soc 1:4–13

    Article  MathSciNet  MATH  Google Scholar 

  156. Kelvin LO (1890) Lord oscillations of a liquid sphere. Math Phys Pap 3:384–386

    Google Scholar 

  157. Hu XY, Adams NA (2006) A multi-phase SPH method for macroscopic and mesoscopic flows. J Comput Phys 213:844–861

    Article  MathSciNet  MATH  Google Scholar 

  158. Ritchie BW, Thomas PA (2001) Multiphase smoothed-particle hydrodynamics. Mon Not R Astron Soc 323:743–756

    Article  Google Scholar 

  159. Stillinger FH, Rahman A (1974) Improved simulation of liquid water by molecular dynamics. J Chem Phys 60:1545–1557

    Article  Google Scholar 

  160. Chen S, Doolen GD (1998) Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30:329–364

    Article  MathSciNet  MATH  Google Scholar 

  161. Rubinstein RY, Kroese DP (2016) Simulation and the Monte Carlo method. Wiley Series in Probability and Statistics, Wiley, ISBN 9781118632161

  162. Harlow FH (1962) The particle-in-cell method for numerical solution of problems in fluid dynamics. Los Alamos National Lab.(LANL), Los Alamos, NM (United States)

  163. Shahriari S, Hassan IG, Kadem L (2013) Modeling unsteady flow characteristics using smoothed particle hydrodynamics. Appl Math Model 37:1431–1450

    Article  MathSciNet  MATH  Google Scholar 

  164. Domínguez JM, Crespo AJC, Gómez-Gesteira M, Marongiu J (2011) Neighbour lists in smoothed particle hydrodynamics. Int J Numer Methods Fluids 67:2026–2042

    Article  MathSciNet  MATH  Google Scholar 

  165. Band S, Gissler C, Teschner M (2020) Compressed neighbour lists for SPH. In: Proceedings of the computer graphics forum, vol 39, pp 531–542. Wiley Online Library

  166. Williams JR, Holmes D, Tilke P (2011) Parallel computation particle methods for multi-phase fluid flow with application oil reservoir characterization. In: Particle-based methods, pp 113–134. Springer

  167. Holmes DW, Williams JR, Tilke P (2010) An events based algorithm for distributing concurrent tasks on multi-core architectures. Comput Phys Commun 181:341–354

    Article  Google Scholar 

  168. Bui HH, Sako K, Fukagawa R (2007) Numerical simulation of soil-water interaction using smoothed particle hydrodynamics (SPH) method. J Terramech 44:339–346

    Article  Google Scholar 

  169. Liu MB, Liu GR (2006) Restoring particle consistency in smoothed particle hydrodynamics. Appl Numer Math 56:19–36. https://doi.org/10.1016/j.apnum.2005.02.012

    Article  MathSciNet  MATH  Google Scholar 

  170. Quinlan NJ, Basa M, Lastiwka M (2006) Truncation error in mesh-free particle methods. Int J Numer Methods Eng 66:2064–2085

    Article  MathSciNet  MATH  Google Scholar 

  171. Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38:1655–1679

    Article  MathSciNet  MATH  Google Scholar 

  172. Fulk DA (1994) A numerical analysis of smoothed particle hydrodynamics. Air Force Institute of Technology, ISBN 9798208253038

  173. Chen JK, Beraun JE, Jih CJ (1999) An improvement for tensile instability in smoothed particle hydrodynamics. Comput Mech 23:279–287

    Article  MATH  Google Scholar 

  174. Vignjevic R, Reveles JR, Campbell J (2006) SPH in a total Lagrangian formalism. C Comput Model Eng Sci 14:181–198

    MathSciNet  MATH  Google Scholar 

  175. Adami S, Hu XY, Adams NA (2013) A transport-velocity formulation for smoothed particle hydrodynamics. J Comput Phys 241:292–307

    Article  MathSciNet  MATH  Google Scholar 

  176. Di Blasi G, Francomano E, Tortorici A, Toscano E (2009) On the consistency restoring in SPH. In: Proceedings of the proceedings of the CMMSE (international conference on computational and mathematical methods in science and engineering)

  177. Sibilla S (2015) An algorithm to improve consistency in smoothed particle hydrodynamics. Comput Fluids 118:148–158. https://doi.org/10.1016/j.compfluid.2015.06.012

    Article  MathSciNet  MATH  Google Scholar 

  178. Huang C, Lei JM, Liu MB, Peng XY (2015) A kernel gradient free (KGF) SPH method. Int J Numer Methods Fluids 78:691–707. https://doi.org/10.1002/fld.4037

    Article  MathSciNet  Google Scholar 

  179. Liu MB, Xie WP, Liu GR (2005) Modeling incompressible flows using a finite particle method. Appl Math Model 29:1252–1270

    Article  MATH  Google Scholar 

  180. Chen JK, Beraun JE, Jih CJ (1999) Completeness of corrective smoothed particle method for linear elastodynamics. Comput Mech 24:273–285. https://doi.org/10.1007/s004660050516

    Article  MATH  Google Scholar 

  181. Zhang GM, Batra R (2004) Modified smoothed particle hydrodynamics method and its application to transient problems. Comput Mech 34:137–146

    Article  MATH  Google Scholar 

  182. Zhou D, Chen S, Li L, Li H, Zhao Y (2008) Accuracy improvement of smoothed particle hydrodynamics. Eng Appl Comput Fluid Mech 2:244–251. https://doi.org/10.1080/19942060.2008.11015225

    Article  Google Scholar 

  183. Brookshaw L (1985) A method of calculating radiative heat diffusion in particle simulations. Publ Astron Soc Aust 6:207–210

    Article  Google Scholar 

  184. Fatehi R, Manzari MT (2011) Error estimation in smoothed particle hydrodynamics and a new scheme for second derivatives. Comput Math Appl 61:482–498. https://doi.org/10.1016/j.camwa.2010.11.028

    Article  MathSciNet  MATH  Google Scholar 

  185. Zhu Q, Hernquist L, Li Y (2015) Numerical convergence in smoothed particle hydrodynamics. Astrophys J Lett. https://doi.org/10.1088/0004-637X/800/1/6

    Article  Google Scholar 

  186. Di Lisio R, Grenier E, Pulvirenti M (1998) The convergence of the SPH method. Comput Math Appl 35:95–102. https://doi.org/10.1016/s0898-1221(97)00260-5

    Article  MathSciNet  MATH  Google Scholar 

  187. Rasio FA (2000) Particle methods in astrophysical fluid dynamics. Prog Theor Phys Suppl. https://doi.org/10.1143/PTPS.138.609

    Article  Google Scholar 

  188. Sigalotti LDG, Rendón O, Klapp J, Vargas CA, Cruz F (2019) A new insight into the consistency of the SPH interpolation formula. Appl Math Comput 356:50–73. https://doi.org/10.1016/j.amc.2019.03.018

    Article  MathSciNet  MATH  Google Scholar 

  189. Cercos-pita JL (2012) Consistency and applications to ISPH and WCSPH, 128

  190. Read JI, Hayfield T, Agertz O (2010) Resolving mixing in smoothed particle hydrodynamics. Mon Not R Astron Soc 405:1513–1530. https://doi.org/10.1111/j.1365-2966.2010.16577.x

    Article  Google Scholar 

  191. Di G. Sigalotti L, Klapp J, Rendón O, Vargas CA, Peña-Polo F (2016) On the kernel and particle consistency in smoothed particle hydrodynamics. Appl Numer Math 108:242–255. https://doi.org/10.1016/j.apnum.2016.05.007

    Article  MathSciNet  MATH  Google Scholar 

  192. Monaghan JJ, Lattanzio JC (1985) A refined particle method for astrophysical problems. Astron Astrophys (ISSN 0004–6361), vol 149, no 1, p. 135–143, 149, 135–143

  193. Walsh SDC, Mason HE, Du Frane WL, Carroll SA (2014) Experimental calibration of a numerical model describing the alteration of cement/caprock interfaces by carbonated brine. Int J Greenh Gas Control 22:176–188. https://doi.org/10.1016/j.ijggc.2014.01.004

    Article  Google Scholar 

  194. Gabbasov R, Sigalotti LDG, Cruz F, Klapp J, Ramírez-Velasquez JM (2017) Consistent SPH simulations of protostellar collapse and fragmentation. Astrophys J 835:287. https://doi.org/10.3847/1538-4357/aa5655

    Article  Google Scholar 

  195. Ben Moussa B, Vila JP (2000) Convergence of SPH method for scalar nonlinear conservation laws. SIAM J Numer Anal 37:863–887. https://doi.org/10.1137/S0036142996307119

    Article  MathSciNet  MATH  Google Scholar 

  196. Vaughan GL, Healy TR, Bryan KR, Sneyd AD, Gorman RM (2008) Completeness, conservation and error in SPH for fluids. Int J Numer Methods Fluids 56:37–62. https://doi.org/10.1002/fld.1530

    Article  MathSciNet  MATH  Google Scholar 

  197. Litvinov S, Hu XY, Adams NA (2015) Towards consistence and convergence of conservative SPH approximations. J Comput Phys 301:394–401. https://doi.org/10.1016/j.jcp.2015.08.041

    Article  MathSciNet  MATH  Google Scholar 

  198. Sigalotti LDG, Klapp J, Gesteira MG (2021) The mathematics of smoothed particle hydrodynamics (SPH) consistency. Front Appl Math Stat 7:1–16. https://doi.org/10.3389/fams.2021.797455

    Article  Google Scholar 

  199. Jones JE (1924) On the determination of molecular fields.—II. From the equation of state of a gas. Proc R Soc Lond Ser A Contain Pap Math Phys Character 106:463–477

    Google Scholar 

  200. Jones JE (1924) On the determination of molecular fields.—I. From the variation of the viscosity of a gas with temperature. Proc R Soc Lond Ser. A Contain Pap Math Phys Character 106:441–462

    Google Scholar 

  201. Crespo AJC, Gómez-Gesteira M, Dalrymple RA (2007) 3D SPH simulation of large waves mitigation with a dike. J Hydraul Res 45:631–642

    Article  Google Scholar 

  202. Gómez-Gesteira M, Cerqueiro D, Crespo C, Dalrymple RA (2005) Green water overtopping analyzed with a SPH model. Ocean Eng 32:223–238

    Article  Google Scholar 

  203. Gómez-Gesteira M, Dalrymple RA (2004) Using a three-dimensional smoothed particle hydrodynamics method for wave impact on a tall structure. J Waterw Port Coast Ocean Eng 130:63–69

    Article  Google Scholar 

  204. Dalrymple RA, Knio O (2001) SPH modelling of water waves. In: Proceedings of the coastal dynamics’ 01, pp 779–787

  205. Peskin CS (1977) Numerical analysis of blood flow in the heart. J Comput Phys 25:220–252

    Article  MathSciNet  MATH  Google Scholar 

  206. Monaghan JJ, Kos A (1999) Solitary waves on a Cretan beach. J Waterw Port Coast Ocean Eng 125:145–155

    Article  Google Scholar 

  207. Monaghan JJ, Kos A, Issa N (2003) Fluid motion generated by impact. J Waterw Port Coast Ocean Eng 129:250–259

    Article  Google Scholar 

  208. Barker DJ (2014) The application of smoothed particle hydrodynamics to the simulation of multiphase flows through packed beds

  209. Das R, Cleary PW (2010) Effect of rock shapes on brittle fracture using smoothed particle hydrodynamics. Theor Appl Fract Mech 53:47–60

    Article  Google Scholar 

  210. Krog ØE, Elster AC (2010) Fast Gpu-based fluid simulations using Sph. In: Proceedings of the international workshop on applied parallel computing, pp 98–109. Springer

  211. Omidvar P, Stansby PK, Rogers BD (2013) SPH for 3D floating bodies using variable mass particle distribution. Int J Numer Methods Fluids 72:427–452

    Article  MathSciNet  MATH  Google Scholar 

  212. Pereira GG, Prakash M, Cleary PW (2011) SPH modelling of fluid at the grain level in a porous medium. Appl Math Model 35:1666–1675

    Article  MathSciNet  MATH  Google Scholar 

  213. Müller M, Charypar D, Gross M (2003) Particle-based fluid simulation for interactive applications. In: Proceedings of the proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 154–159. Citeseer

  214. Ovaysi S, Piri M (2010) Direct pore-level modeling of incompressible fluid flow in porous media. J Comput Phys 229:7456–7476

    Article  MathSciNet  MATH  Google Scholar 

  215. Feldman J, Bonet J (2007) Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems. Int J Numer Methods Eng 72:295–324

    Article  MathSciNet  MATH  Google Scholar 

  216. Ferrand M, Laurence DR, Rogers BD, Violeau D, Kassiotis C (2013) Unified semi-analytical wall boundary conditions for inviscid, Laminar or turbulent flows in the meshless SPH method. Int J Numer Methods Fluids 71:446–472

    Article  MathSciNet  MATH  Google Scholar 

  217. Kulasegaram S, Bonet J, Lewis RW, Profit M (2004) A variational formulation based contact algorithm for rigid boundaries in two-dimensional SPH applications. Comput Mech 33:316–325

    Article  MATH  Google Scholar 

  218. Meakin P, Tartakovsky AM (2009) Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media. Rev Geophys 47:1–47. https://doi.org/10.1029/2008RG000263

    Article  Google Scholar 

  219. Li S, Liu WK (2002) Meshfree and particle methods and their applications. Appl Mech Rev 55:1–34

    Article  Google Scholar 

  220. Liu M, Meakin P, Huang H (2007) Dissipative particle dynamics simulation of pore‐scale multiphase fluid flow. Water Resour Res 43

  221. Revenga M, Zuniga I, Espanol P, Pagonabarraga I (1998) Boundary models in DPD. Int J Mod Phys C 9:1319–1328

    Article  Google Scholar 

  222. Wang L, Ge W, Li J (2006) A New wall boundary condition in particle methods. Comput Phys Commun 174:386–390

    Article  MathSciNet  MATH  Google Scholar 

  223. Benz W (1990) Smooth particle hydrodynamics: a review. Numer Model Nonlinear Stellar Pulsations 269–288

  224. Agertz O, Moore B, Stadel J, Potter D, Miniati F, Read J, Mayer L, Gawryszczak A, Kravtsov A, Nordlund Å (2007) Fundamental differences between SPH and grid methods. Mon Not R Astron Soc 380:963–978

    Article  MATH  Google Scholar 

  225. Hernquist L (1993) Some cautionary remarks about smoothed particle hydrodynamics. Astrophys J 404:717–722

    Article  Google Scholar 

  226. Nguyen VP, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simul 79:763–813

    Article  MathSciNet  MATH  Google Scholar 

  227. Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications, vol. 1. Elsevier, ISBN 0080519989

  228. Revenga M, Zuniga I, Espanol P (1999) Boundary conditions in dissipative particle dynamics. Comput Phys Commun 121:309–311

    Article  Google Scholar 

  229. Willemsen SM, Hoefsloot HCJ, Iedema PD (2000) No-slip boundary condition in dissipative particle dynamics. Int J Mod Phys C 11:881–890

    Article  Google Scholar 

  230. Duong-Hong D, Phan-Thien N, Fan X (2004) An implementation of no-slip boundary conditions in DPD. Comput Mech 35:24–29

    Article  MATH  Google Scholar 

  231. Crespo AJC, Gómez-Gesteira M, Dalrymple RA (2007) Boundary conditions generated by dynamic particles in SPH methods. Comput Mater Contin 5:173–184

    MathSciNet  MATH  Google Scholar 

  232. Campbell PM (1989) Some new algorithms for boundary value problems in smooth particle hydrodynamics. MISSION RESEARCH CORP ALBUQUERQUE NM

  233. Yang X, Mehmani Y, Perkins WA, Pasquali A, Schönherr M, Kim K, Perego M, Parks ML, Trask N, Balhoff MT et al (2016) Intercomparison of 3D pore-scale flow and solute transport simulation methods. Adv Water Resour 95:176–189. https://doi.org/10.1016/j.advwatres.2015.09.015

    Article  Google Scholar 

  234. Yang X, Kong SC (2017) Smoothed particle hydrodynamics method for evaporating multiphase flows. Phys Rev E 96:1–10. https://doi.org/10.1103/PhysRevE.96.033309

    Article  Google Scholar 

  235. Campbell J, Vignjevic R, Libersky L (2000) A contact algorithm for smoothed particle hydrodynamics. Comput Methods Appl Mech Eng 184:49–65

    Article  MathSciNet  MATH  Google Scholar 

  236. Liu MB, Liu GR, Lam KY, Zong Z (2003) Smoothed particle hydrodynamics for numerical simulation of underwater explosion. Comput Mech 30:106–118

    Article  MATH  Google Scholar 

  237. Yildiz M, Rook RA, Suleman A (2009) SPH with the multiple boundary tangent method. Int J Numer Methods Eng 77:1416–1438

    Article  MathSciNet  MATH  Google Scholar 

  238. Ellero M, Tanner RI (2005) SPH simulations of transient viscoelastic flows at low Reynolds number. J Nonnewton Fluid Mech 132:61–72

    Article  MATH  Google Scholar 

  239. Ellero M, Kröger M, Hess S (2002) Viscoelastic flows studied by smoothed particle dynamics. J Nonnewton Fluid Mech 105:35–51

    Article  MATH  Google Scholar 

  240. Solenthaler B, Pajarola R (2008) Density contrast SPH interfaces

  241. Wang ZB, Chen R, Wang H, Liao Q, Zhu X, Li SZ (2016) An overview of smoothed particle hydrodynamics for simulating multiphase flow. Appl Math Model 40:9625–9655. https://doi.org/10.1016/j.apm.2016.06.030

    Article  MathSciNet  MATH  Google Scholar 

  242. Pukhov A, Meyer-ter-Vehn J (1996) Relativistic magnetic self-channeling of light in near-critical plasma: three-dimensional particle-in-cell simulation. Phys Rev Lett 76:3975

    Article  Google Scholar 

  243. Matyash K, Schneider R, Taccogna F, Hatayama A, Longo S, Capitelli M, Tskhakaya D, Bronold FX (2007) Particle in cell simulation of low temperature laboratory plasmas. Contrib Plasma Phys 47:595–634

    Article  Google Scholar 

  244. Tome MF, McKee S (1994) GENSMAC: a computational marker and cell method for free surface flows in general domains. J Comput Phys 110:171–186

    Article  MATH  Google Scholar 

  245. Peng D, Merriman B, Osher S, Zhao H, Kang M (1999) A PDE-based fast local level set method. J Comput Phys 155:410–438

    Article  MathSciNet  MATH  Google Scholar 

  246. Peigang J, Yiqi Z, Zirui L, Lei C (2008) Simulation of two-phase flow using smoothed particle hydrodynamics. In: Proceedings of the 2008 IEEE international symposium on knowledge acquisition and modeling workshop, pp 296–300. IEEE

  247. Losasso F, Shinar T, Selle A, Fedkiw R (2006) Multiple interacting liquids. ACM Trans Graph 25:812–819

    Article  Google Scholar 

  248. Losasso F, Talton J, Kwatra N, Fedkiw R (2008) Two-way coupled SPH and particle level set fluid simulation. IEEE Trans Vis Comput Graph 14:797–804

    Article  Google Scholar 

  249. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139:3–47

    Article  MATH  Google Scholar 

  250. Violeau D, Issa R (2007) Numerical modelling of complex turbulent free-surface flows with the SPH method: an overview. Int J Numer Methods Fluids 53:277–304

    Article  MathSciNet  MATH  Google Scholar 

  251. Dolbow J, Belytschko T (1998) An introduction to programming the meshless element F ReeGalerkin method. Arch Comput Methods Eng 5:207–241

    Article  Google Scholar 

  252. Oñate E, Idelsohn S (1998) A mesh-free finite point method for advective-diffusive transport and fluid flow problems. Comput Mech 21:283–292

    Article  MathSciNet  MATH  Google Scholar 

  253. Yagawa G, Yamada T (1996) Free mesh method: a new meshless finite element method. Comput Mech 18:383–386

    Article  MATH  Google Scholar 

  254. Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10:307–318

    Article  MathSciNet  MATH  Google Scholar 

  255. Liu MB, Liu GR (2005) Meshfree particle simulation of micro channel flows with surface tension. Comput Mech 35:332–341

    Article  MATH  Google Scholar 

  256. Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100:335–354

    Article  MathSciNet  MATH  Google Scholar 

  257. Das AK, Das PK (2010) Equilibrium shape and contact angle of sessile drops of different volumes—computation by SPH and its further improvement by DI. Chem Eng Sci 65:4027–4037

    Article  Google Scholar 

  258. Kunz P, Zarikos IM, Karadimitriou NK, Huber M, Nieken U, Hassanizadeh SM (2016) Study of multi-phase flow in porous media: comparison of SPH simulations with micro-model experiments. Transp Porous Media 114:581–600. https://doi.org/10.1007/s11242-015-0599-1

    Article  Google Scholar 

  259. Huber M, Säckel W, Hirschler M, Hassanizadeh SM, Nieken U (2013) Modeling the dynamics of partial wetting. In: Proceedings of the PARTICLES III: proceedings of the III international conference on particle-based methods: fundamentals and applications. CIMNE, pp 470–481

  260. Moody MP, Attard P (2001) Curvature dependent surface tension from a simulation of a cavity in a Lennard-Jones liquid close to coexistence. J Chem Phys 115:8967–8977

    Article  Google Scholar 

  261. Mecke M, Winkelmann J, Fischer J (1997) Molecular dynamics simulation of the liquid-vapor interface: the Lennard-Jones fluid. J Chem Phys 107:9264–9270

    Article  Google Scholar 

  262. Dragila MI, Weisbrod N (2004) Fluid motion through an unsaturated fracture junction. Water Resour Res 40

  263. Yue P, Feng JJ, Liu C, Shen J (2004) A diffuse-interface method for simulating two-phase flows of complex fluids. J Fluid Mech 515:293–317

    Article  MathSciNet  MATH  Google Scholar 

  264. Gonnella G, Orlandini E, Yeomans JM (1998) Lattice Boltzmann simulations of lamellar and droplet phases. Phys Rev E 58:480

    Article  Google Scholar 

  265. Shan X, Chen H (1815) Lattice Boltzmann model for simulating flows with multiple phases and components. Phys Rev E 1993:47

    Google Scholar 

  266. Liu MB, Chang JZ, Liu HT, Su TX (2011) Modeling of contact angles and wetting effects with particle methods. Int J Comput Methods 8:637–651

    Article  Google Scholar 

  267. Espanol P, Warren P (1995) Statistical mechanics of dissipative particle dynamics. EPL Europhys Lett 30:191

    Article  Google Scholar 

  268. Ertaş D, Kardar M (1993) Dynamic relaxation of drifting polymers: a phenomenological approach. Phys Rev E 48:1228

    Article  Google Scholar 

  269. Koplik J, Levine H (1985) Interface moving through a random background. Phys Rev B 32:280

    Article  Google Scholar 

  270. Nattermann T, Stepanow S, Tang L-H, Leschhorn H (1992) Dynamics of interface depinning in a disordered medium. J Phys II(2):1483–1488

    Google Scholar 

  271. Narayan O, Fisher DS (1993) Threshold critical dynamics of driven interfaces in random media. Phys Rev B 48:7030

    Article  Google Scholar 

  272. Tartakovsky AM, Panchenko A (2016) Pairwise force smoothed particle hydrodynamics model for multiphase flow: surface tension and contact line dynamics. J Comput Phys 305:1119–1146

    Article  MathSciNet  MATH  Google Scholar 

  273. Huang H, Meakin P (2008) Three‐dimensional simulation of liquid drop dynamics within unsaturated vertical Hele-Shaw cells. Water Resour Res 44

  274. Raeini AQ, Blunt MJ, Bijeljic B (2012) Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method. J Comput Phys 231:5653–5668

    Article  MathSciNet  MATH  Google Scholar 

  275. Tomin P, Lunati I (2013) Hybrid multiscale finite volume method for two-phase flow in porous media. J Comput Phys 250:293–307

    Article  MathSciNet  Google Scholar 

  276. Osher S, Fedkiw R (2006) Level set methods and dynamic implicit surfaces. Applied Mathematical Sciences. Springer New York, ISBN 9780387227467

  277. Liu M, Meakin P, Huang H (2007) Dissipative particle dynamics simulation of fluid motion through an unsaturated fracture and fracture junction. J Comput Phys 222:110–130

    Article  MATH  Google Scholar 

  278. Tartakovsky AM, Meakin P, Ward AL (2009) Smoothed particle hydrodynamics model of non-aqueous phase liquid flow and dissolution. Transp Porous Media 76:11–34

    Article  Google Scholar 

  279. Tartakovsky AM, Ward AL, Meakin P (2007) Pore-scale simulations of drainage of heterogeneous and anisotropic porous media. Phys Fluids 19:103301

    Article  MATH  Google Scholar 

  280. Adami S, Hu XY, Adams NA (2010) A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation. J Comput Phys 229:5011–5021

    Article  MATH  Google Scholar 

  281. Bandara UC, Tartakovsky AM, Oostrom M, Palmer BJ, Grate J, Zhang C (2013) Smoothed particle hydrodynamics pore-scale simulations of unstable immiscible flow in porous media. Adv Water Resour 62:356–369

    Article  Google Scholar 

  282. Maxwell JC (2011) Capillary action. In: Niven WD (ed) The scientific papers of James Clerk Maxwell. Cambridge University Press, Cambridge, pp 541–591

    Chapter  MATH  Google Scholar 

  283. Hardy RJ (1982) Formulas for determining local properties in molecular-dynamics simulations: shock waves. J Chem Phys 76:622–628

    Article  Google Scholar 

  284. Rowlinson JS, Widom B (2013) Molecular theory of capillarity. Courier Corporation, ISBN 0486317099

  285. Koshizuka S, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl Sci Eng 123:421–434

    Article  Google Scholar 

  286. Kordilla J, Tartakovsky AM, Geyer T (2013) A smoothed particle hydrodynamics model for droplet and film flow on smooth and rough fracture surfaces. Adv Water Resour 59:1–14

    Article  Google Scholar 

  287. ElSherbini AI, Jacobi AM (2004) Liquid drops on vertical and inclined surfaces: I. An experimental study of drop geometry. J Colloid Interface Sci 273:556–565

    Article  Google Scholar 

  288. Podgorski T, Flesselles J-M, Limat L (2001) Corners, cusps, and pearls in running drops. Phys Rev Lett 87:36102

    Article  Google Scholar 

  289. Ghezzehei TA (2004) Constraints for flow regimes on smooth fracture surfaces. Water Resour Res 40

  290. Grenier N, Touze DL, Antuono M, Colagrossi A (2008) An improved SPH method for multi-phase simulations. In: Proceedings of the proceedings of the 8nd international conference on hydrodynamics, vol 11

  291. Taylor GI (1950) The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc R Soc Lond Ser A Math Phys Sci 201:192–196

    MathSciNet  MATH  Google Scholar 

  292. Qiang HF, Chen FZ, Gao WR (2011) Modified algorithm for surface tension with smoothed particle hydrodynamics and its applications. Chin J Comput Mech 28:37–42

    MATH  Google Scholar 

  293. Chen JK, Beraun JE, Carney TC (1999) A corrective smoothed particle method for boundary value problems in heat conduction. Int J Numer Methods Eng 46:231–252. https://doi.org/10.1002/(SICI)1097-0207(19990920)46:2%3c231::AID-NME672%3e3.0.CO;2-K

    Article  MATH  Google Scholar 

  294. Yang L (2019) Numerical modeling of surface tension with smoothed particles hydrodynamics. University of Wisconsin--Madison

  295. Yang L, Rakhsha M, Negrut D (2019) Comparison of surface tension models in smoothed particles hydrodynamics method. Proc ASME Des Eng Tech Conf. https://doi.org/10.1115/DETC2019-98124

    Article  Google Scholar 

  296. Tartakovsky AM, Trask N, Pan K, Jones B, Pan W, Williams JR (2016) Smoothed particle hydrodynamics and its applications for multiphase flow and reactive transport in porous media. Comput Geosci 20:807–834

    Article  MathSciNet  MATH  Google Scholar 

  297. Pereira GG, Dupuy PM, Cleary PW, Delaney GW (2012) Comparison of permeability of model porous media between SPH and LB. Prog Comput Fluid Dyn Int J 12:176–186

    Article  Google Scholar 

  298. Monaghan JJ, Kajtar JB (2009) SPH particle boundary forces for arbitrary boundaries. Comput Phys Commun 180:1811–1820

    Article  MathSciNet  MATH  Google Scholar 

  299. Domínguez JM, Crespo AJC, Valdez-Balderas D, Rogers BD, Gómez-Gesteira M (2013) New multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters. Comput Phys Commun 184:1848–1860

    Article  Google Scholar 

  300. Springel V, Yoshida N, White SDM (2001) GADGET: a code for collisionless and gasdynamical cosmological simulations. New Astron 6:79–117

    Article  Google Scholar 

  301. Alvarado-Rodríguez CE, Klapp J, Sigalotti LDG, Domínguez JM, de la Cruz Sánchez E (2017) Nonreflecting outlet boundary conditions for incompressible flows using SPH. Comput Fluids 159:177–188. https://doi.org/10.1016/j.compfluid.2017.09.020

    Article  MathSciNet  MATH  Google Scholar 

  302. Sigalotti LDG, Alvarado-Rodríguez CE, Klapp J, Cela JM (2021) Smoothed particle hydrodynamics simulations of water flow in a 90◦ pipe bend. Water (Switzerland) 13:1–16. https://doi.org/10.3390/w13081081

    Article  Google Scholar 

  303. Alvarado-Rodríguez CE, Sigalotti LDG, Klapp J, Fierro-Santillán CR, Aragón F, Uribe-Ramírez AR (2021) Smoothed particle hydrodynamics simulations of turbulent flow in curved pipes with different geometries: a comparison with experiments. J Fluids Eng Trans ASME. https://doi.org/10.1115/1.4050514

    Article  Google Scholar 

  304. Federico I, Veltri P, Colagrossi A, Macchione F. Simulating open-channel flows and advective diffusion phenomena through SPH model 2014

  305. Wang P, Zhang A-M, Ming F, Sun P, Cheng H (2019) A novel non-reflecting boundary condition for fluid dynamics solved by smoothed particle hydrodynamics. J Fluid Mech 860:81–114

    Article  MathSciNet  MATH  Google Scholar 

  306. Tafuni A, Domínguez JM, Vacondio R, Crespo AJC (2018) A versatile algorithm for the treatment of open boundary conditions in smoothed particle hydrodynamics GPU models. Comput Methods Appl Mech Eng 342:604–624

    Article  MathSciNet  MATH  Google Scholar 

  307. Altomare C, Domínguez JM, Crespo AJC, González-Cao J, Suzuki T, Gómez-Gesteira M, Troch P (2017) Long-crested wave generation and absorption for SPH-based DualSPHysics model. Coast Eng 127:37–54

    Article  Google Scholar 

  308. Gong K, Liu H, Wang B (2009) Water entry of a wedge based on SPH model with an improved boundary treatment. J Hydrodyn 21:750–757

    Article  Google Scholar 

  309. Jabbari Sahebari A, Jin Y-C, Shakibaeinia A (2011) Flow over Sills by the MPS mesh-free particle method. J Hydraul Res 49:649–656

    Article  Google Scholar 

  310. Shakibaeinia A, Jin Y-C (2011) MPS-based mesh-free particle method for modeling open-channel flows. J Hydraul Eng 137:1375–1384

    Article  Google Scholar 

  311. Federico I, Marrone S, Colagrossi A, Aristodemo F, Antuono M (2012) Simulating 2D open-channel flows through an SPH model. Eur J Mech 34:35–46

    Article  MathSciNet  MATH  Google Scholar 

  312. López D, Marivela R, Garrote L (2010) Smoothed particle hydrodynamics model applied to hydraulic structures: a hydraulic jump test case. J Hydraul Res 48:142–158

    Article  Google Scholar 

  313. Chern M-J, Syamsuri S (2013) Effect of Corrugated bed on hydraulic jump characteristic using SPH method. J Hydraul Eng 139:221–232

    Article  Google Scholar 

  314. Kazemi E, Nichols A, Tait S, Shao S (2017) SPH modelling of depth-limited turbulent open channel flows over rough boundaries. Int J Numer Methods Fluids 83:3–27

    Article  MathSciNet  Google Scholar 

  315. Dey S (2014) Fluvial hydrodynamics. Springer, ISBN 3642190618

  316. Fu L, Jin Y-C (2013) A mesh-free method boundary condition technique in open channel flow simulation. J Hydraul Res 51:174–185

    Article  Google Scholar 

  317. Gotoh H, Shibahara T, Sakai T (2001) Sub-particle-scale turbulence model for the MPS method—Lagrangian flow model for hydraulic engineering. Comput Fluid Dyn J 9:339–347

    Google Scholar 

  318. Violeau D (2004) One and two-equations turbulent closures for smoothed particle hydrodynamics. In: Hydroinformatics: (In 2 Volumes, with CD-ROM), pp 87–94. World Scientific

  319. Gabreil E, Tait SJ, Shao S, Nichols A (2018) SPHysics simulation of laboratory shallow free surface turbulent flows over a rough bed. J Hydraul Res 56:727–747

    Article  Google Scholar 

  320. Ryan EM, Tartakovsky AM, Amon C (2010) A novel method for modeling Neumann and Robin boundary conditions in smoothed particle hydrodynamics. Comput Phys Commun 181:2008–2023

    Article  MathSciNet  MATH  Google Scholar 

  321. Cleary PW, Monaghan JJ (1999) Conduction modelling using smoothed particle hydrodynamics. J Comput Phys 148:227–264

    Article  MathSciNet  MATH  Google Scholar 

  322. Tartakovsky AM, Scheibe TD, Meakin P (2009) Pore-scale model for reactive transport and biomass growth. J Porous Media 12

  323. Negi P, Ramachandran P, Haftu A (2020) An improved non-reflecting outlet boundary condition for weakly-compressible SPH. Comput Methods Appl Mech Eng 367:113119. https://doi.org/10.1016/j.cma.2020.113119

    Article  MathSciNet  MATH  Google Scholar 

  324. Lastiwka M, Basa M, Quinlan NJ (2009) Permeable and non-reflecting boundary conditions in SPH. Int J Numer Methods Fluids 61:709–724

    Article  MathSciNet  MATH  Google Scholar 

  325. Marrone S, Colagrossi A, Antuono M, Colicchio G, Graziani G (2013) An accurate SPH modeling of viscous flows around bodies at low and moderate Reynolds numbers. J Comput Phys 245:456–475

    Article  MathSciNet  MATH  Google Scholar 

  326. Khorasanizade S, Sousa JMM (2016) An innovative open boundary treatment for incompressible SPH. Int J Numer Methods Fluids 80:161–180

    Article  MathSciNet  Google Scholar 

  327. Khorasanizade S, Sousa JMM, Pinto JF (2012) On the use of a time-dependent driving force in SPH simulations. In: Proceedings of the proceedings of 7th international SPHERIC workshop

  328. Breuer M, Bernsdorf J, Zeiser T, Durst F (2000) Accurate computations of the laminar flow past a square cylinder based on two different methods: lattice-Boltzmann and finite-volume. Int J Heat Fluid Flow 21:186–196

    Article  Google Scholar 

  329. Hosseini SM, Feng JJ (2011) Pressure boundary conditions for computing incompressible flows with SPH. J Comput Phys 230:7473–7487

    Article  MathSciNet  MATH  Google Scholar 

  330. Cummins SJ, Rudman M (1999) An SPH projection method. J Comput Phys 152:584–607

    Article  MathSciNet  MATH  Google Scholar 

  331. Courant R, Friedrichs K, Lewy H (1928) Über Die Partiellen Differenzengleichungen Der Mathematischen Physik. Math Ann 100:32–74. https://doi.org/10.1007/BF01448839

    Article  MathSciNet  MATH  Google Scholar 

  332. Warren PB (2003) Vapor-liquid coexistence in many-body dissipative particle dynamics. Phys Rev E 68:66702

    Article  Google Scholar 

  333. Hadjiconstantinou NG, Garcia AL, Alder BJ (2000) The surface properties of a van Der Waals fluid. Phys A Stat Mech Appl 281:337–347

    Article  Google Scholar 

  334. Anderson DM, McFadden GB, Wheeler AA (1998) Diffuse-interface methods in fluid mechanics. Annu Rev Fluid Mech 30:139–165

    Article  MathSciNet  MATH  Google Scholar 

  335. Jacqmin D (2000) Contact-line dynamics of a diffuse fluid interface. J Fluid Mech 402:57–88

    Article  MathSciNet  MATH  Google Scholar 

  336. Jasnow D, Vinals J (1996) Coarse-grained description of thermo-capillary flow. Phys Fluids 8:660–669

    Article  MATH  Google Scholar 

  337. Duff RE, Harlow FH, Hirt CW (1962) Effects of diffusion on interface instability between gases. Phys Fluids 5:417–425

    Article  MATH  Google Scholar 

  338. Fournier E, Gauthier S, Renaud F (2002) 2D pseudo-spectral parallel Navier-Stokes simulations of compressible Rayleigh-Taylor instability. Comput Fluids 31:569–587

    Article  MATH  Google Scholar 

  339. Aris R (1956) On the Dispersion of a solute in a fluid flowing through a tube. Proc R Soc Lond Ser A Math Phys Sci 235:67–77

    Google Scholar 

  340. Sharp DH (1984) An overview of Rayleigh-Taylor instability. Phys D Nonlinear Phenom 12:3–18

    Article  MATH  Google Scholar 

  341. Tartakovsky AM (2010) Lagrangian simulations of unstable gravity-driven flow of fluids with variable density in randomly heterogeneous porous media. Stoch Environ Res Risk Assess 24:993–1002

    Article  MATH  Google Scholar 

  342. Deutsch CV, Journel AG (1992) Geostatistical software library and user’s guide, New York, p 119

  343. Strotos G, Gavaises M, Theodorakakos A, Bergeles G (2008) Numerical investigation on the evaporation of droplets depositing on heated surfaces at low Weber numbers. Int J Heat Mass Transf 51:1516–1529

    Article  MATH  Google Scholar 

  344. Nikolopoulos N, Theodorakakos A, Bergeles G (2007) A numerical investigation of the evaporation process of a liquid droplet impinging onto a hot substrate. Int J Heat Mass Transf 50:303–319

    Article  MATH  Google Scholar 

  345. Safari H, Rahimian MH, Krafczyk M (2013) Extended lattice Boltzmann method for numerical simulation of thermal phase change in two-phase fluid flow. Phys Rev E 88:13304

    Article  Google Scholar 

  346. Safari H, Rahimian MH, Krafczyk M (2014) Consistent simulation of droplet evaporation based on the phase-field multiphase lattice Boltzmann method. Phys Rev E 90:33305

    Article  Google Scholar 

  347. Tanguy S, Ménard T, Berlemont A (2007) A level set method for vaporizing two-phase flows. J Comput Phys 221:837–853

    Article  MathSciNet  MATH  Google Scholar 

  348. Sigalotti LDG, Troconis J, Sira E, Peña-Polo F, Klapp J (2015) Smoothed particle hydrodynamics simulations of evaporation and explosive boiling of liquid drops in microgravity. Phys Rev E 92:13021

    Article  Google Scholar 

  349. Das AK, Das PK (2015) Modeling of liquid-vapor phase change using smoothed particle hydrodynamics. J Comput Phys 303:125–145

    Article  MathSciNet  MATH  Google Scholar 

  350. Ray M, Yang X, Kong S-C, Bravo L, Kweon C-BM (2017) High-fidelity simulation of drop collision and vapor-liquid equilibrium of van Der Waals fluids. Proc Combust Inst 36:2385–2392

    Article  Google Scholar 

  351. Zhang L, Kong S-C (2011) High-pressure vaporization modeling of multi-component petroleum-biofuel mixtures under engine conditions. Combust Flame 158:1705–1717

    Article  Google Scholar 

  352. Sirignano WA (2010) Fluid dynamics and transport of droplets and sprays. Cambridge university press, ISBN 0521884896

  353. Adami S, Hu XY, Adams NA (2010) A conservative SPH method for surfactant dynamics. J Comput Phys 229:1909–1926

    Article  MathSciNet  MATH  Google Scholar 

  354. Lenormand R, Touboul E, Zarcone C (1988) Numerical models and experiments on immiscible displacements in porous media. J Fluid Mech 189:165–187

    Article  Google Scholar 

  355. Bromhal GS, Ferer M, Smith DH (2001) Pore-level modeling of carbon dioxide sequestration in oil fields: a study of viscous and buoyancy forces. National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV

  356. Dahle HK, Celia MA, Majid Hassanizadeh S (2005) Bundle-of-tubes model for calculating dynamic effects in the capillary-pressure-saturation relationship. Transp Porous Media 58:5–22

    Article  Google Scholar 

  357. Hassanizadeh SM, Celia MA, Dahle HK (2002) Dynamic effect in the capillary pressure-saturation relationship and its impacts on unsaturated flow. Vadose Zone J 1:38–57

    Article  Google Scholar 

  358. Cahn JW (1961) On spinodal decomposition. Acta Metall 9:795–801

    Article  Google Scholar 

  359. Favvas EP, Mitropoulos AC (2008) What Is spinodal decomposition. J Eng Sci Technol Rev 1:25–27

    Article  Google Scholar 

  360. Elsner A (1991) Calculation of the surface tension according to van Der Waals. Phys Lett A 156:147–154. https://doi.org/10.1016/0375-9601(91)90928-2

    Article  Google Scholar 

  361. Fuchs SL, Meier C, Wall WA, Cyron CJ (2021) An SPH framework for fluid-solid and contact interaction problems including thermo-mechanical coupling and reversible phase transitions. Adv Model Simul Eng Sci 8:1–33

    Article  Google Scholar 

  362. Landau L (1988) On the theory of slow combustion. In: Dynamics of curved fronts, pp 403–411. Elsevier

  363. Mullins WW, Sekerka RF (1964) Stability of a planar interface during solidification of a dilute binary alloy. J Appl Phys 35:444–451

    Article  Google Scholar 

  364. Frost DL (1988) Dynamics of explosive boiling of a droplet. Phys Fluids 31:2554–2561

    Article  Google Scholar 

  365. Moore GR (1959) Vaporization of superheated drops in liquids. AIChE J 5:458–466

    Article  Google Scholar 

  366. Shepherd JE, Sturtevant B (1982) Rapid evaporation at the superheat limit. J Fluid Mech 121:379–402

    Article  Google Scholar 

  367. Golparvar A, Zhou Y, Wu K, Ma J, Yu Z (2018) A comprehensive review of pore scale modeling methodologies for multiphase flow in porous media. Adv Geo-Energy Res 2:418–440

    Article  Google Scholar 

  368. Ferreol B, Rothman DH (1995) Lattice-Boltzmann simulations of flow through fontainebleau sandstone. In: Multiphase flow in porous media, pp. 3–20. Springer

  369. Knackstedt MA, Arns CH, Sheppard AP, Senden TJ, Sok RM, Cinar Y, Pinczewski WV, Ioannidis M, Padhy GS (2007) Archie’s exponents in complex lithologies derived from 3D digital core analysis. In: Proceedings of the SPWLA 48th annual logging symposium. OnePetro

  370. Ryu S, Zhao W, Leu G, Singer PM, Cho HJ, Keehm Y (2010) Numerical modeling of complex porous media for borehole applications: NMR-response and transport in carbonate and sandstone rocks. Adv Comput Tomogr Geomater GeoX 2010:304–311

    Article  Google Scholar 

  371. Schwartz LM, Auzerais F, Dunsmuir J, Martys N, Bentz DP, Torquato S (1994) Transport and diffusion in three-dimensional composite media. Phys A Stat Mech Appl 207:28–36

    Article  Google Scholar 

  372. Sok RM, Arns CH, Knackstedt MA, Senden TJ, Sheppard AP, Averdunk H, Pinczewski WV, Okabe H (2007) Estimation of petrophysical parameters from 3D images of carbonate core. In: Proceedings of the SPWLA middle east regional symposium. OnePetro

  373. Zhan X, Schwartz L, Morgan FD, Toksoz MN (2008) Numerical modeling of transport properties and comparison to laboratory measurements

  374. Tartakovsky AM, Meakin P, Scheibe TD, West RME (2007) Simulations of reactive transport and precipitation with smoothed particle hydrodynamics. J Comput Phys 222:654–672

    Article  MathSciNet  MATH  Google Scholar 

  375. Araque-Martinez A, Lake LW (2000) Some frequently overlooked aspects of reactive flow through permeable media. Ind Eng Chem Res 39:2717–2724

    Article  Google Scholar 

  376. Saripalli KP, Meyer PD, Bacon DH, Freedman VL (2001) Changes in hydrologic properties of aquifer media due to chemical reactions: a review. Crit Rev Environ Sci Technol 31:311–349

    Article  Google Scholar 

  377. Singhal BBS, Gupta RP (2010) Applied hydrogeology of fractured rocks. Springer Science & Business Media, ISBN 9048187990

  378. Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  379. Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12:513–522

    Article  Google Scholar 

  380. Nicholson T, Evans DD (1987) Flow and transport through unsaturated fractured rock

  381. Germann P, Helbling A, Vadilonga T (2007) Rivulet approach to rates of preferential infiltration. Vadose Zone J 6:207–220

    Article  Google Scholar 

  382. Su GW, Geller JT, Hunt JR, Pruess K (2004) Small-scale features of gravity-driven flow in unsaturated fractures. Vadose Zone J 3:592–601

    Google Scholar 

  383. Su GW, Geller JT, Pruess K, Hunt JR (2001) Solute transport along preferential flow paths in unsaturated fractures. Water Resour Res 37:2481–2491

    Article  Google Scholar 

  384. Dragila MI, Weisbrod N (2004) Flow in menisci corners of capillary rivulets. Vadose Zone J 3:1439–1442

    Article  Google Scholar 

  385. Aristodemo F, Federico I, Veltri P, Panizzo A (2010) Two-phase SPH modelling of advective diffusion processes. Environ Fluid Mech 10:451–470

    Article  Google Scholar 

  386. Bao Y, Li L, Shen L, Lei C, Gan Y (2019) Modified smoothed particle hydrodynamics approach for modelling dynamic contact angle hysteresis. Acta Mech Sin 35:472–485

    Article  MathSciNet  Google Scholar 

  387. Huber M, Keller F, Säckel W, Hirschler M, Kunz P, Hassanizadeh SM, Nieken U (2016) On the physically based modeling of surface tension and moving contact lines with dynamic contact angles on the continuum scale. J Comput Phys 310:459–477

    Article  MathSciNet  MATH  Google Scholar 

  388. Lukyanov AV, Likhtman AE (2016) Dynamic contact angle at the nanoscale: a unified view. ACS Nano 10:6045–6053

    Article  Google Scholar 

  389. Schäffer E, Wong P (2000) Contact line dynamics near the pinning threshold: a capillary rise and fall experiment. Phys Rev E 61:5257

    Article  Google Scholar 

  390. Shi Z, Zhang Y, Liu M, Hanaor DAH, Gan Y (2018) Dynamic contact angle hysteresis in liquid bridges. Colloids Surf A Physicochem Eng Asp 555:365–371

    Article  Google Scholar 

  391. Kim J-H, Rothstein JP (2015) Dynamic contact angle measurements of viscoelastic fluids. J Nonnewton Fluid Mech 225:54–61

    Article  Google Scholar 

  392. Seebergh JE, Berg JC (1992) Dynamic wetting in the low capillary number regime. Chem Eng Sci 47:4455–4464

    Article  Google Scholar 

  393. Schwartz AM, Tejada SB (1972) Studies of dynamic contact angles on solids. J Colloid Interface Sci 38:359–375

    Article  Google Scholar 

  394. Holmes DW, Williams JR, Tilke P, Leonardi CR (2016) Characterizing flow in oil reservoir rock using SPH: absolute permeability. Comput Part Mech 3:141–154

    Article  Google Scholar 

  395. Holmes D, Williams J, Tilke P (2009) Smooth particle hydrodynamics for grain scale multi-phase fluid simulations. In: Proceedings of the proceedings of the 2009 international conference on particle-based methods. International Centre for Numerical Methods in Engineering (CIMNE), pp 237–240

  396. Bandara UC, Tartakovsky AM, Palmer BJ (2011) Pore-scale study of capillary trapping mechanism during CO2 injection in geological formations. Int J Greenh Gas Control 5:1566–1577

    Article  Google Scholar 

  397. Jiang F, Sousa A (2008) Smoothed particle hydrodynamics modeling of transverse flow in randomly aligned fibrous porous media. Transp Porous Media 75:17–33

    Article  MathSciNet  Google Scholar 

  398. Artymowicz P, Lubow SH (1994) Dynamics of binary-disk interaction. 1: resonances and disk gap sizes. Astrophys J 421:651–667

    Article  Google Scholar 

  399. Lind SJ, Stansby PK (2016) High-order Eulerian incompressible smoothed particle hydrodynamics with transition to Lagrangian free-surface motion. J Comput Phys 326:290–311

    Article  MathSciNet  MATH  Google Scholar 

  400. Fourtakas G, Stansby PK, Rogers BD, Lind SJ (2018) An Eulerian-Lagrangian incompressible SPH formulation (ELI-SPH) connected with a sharp interface. Comput Methods Appl Mech Eng 329:532–552

    Article  MathSciNet  MATH  Google Scholar 

  401. Fatehi R, Rahmat A, Tofighi N, Yildiz M, Shadloo MS (2019) Density-based smoothed particle hydrodynamics methods for incompressible flows. Comput Fluids 185:22–33

    Article  MathSciNet  MATH  Google Scholar 

  402. Ataie-Ashtiani B, Shobeyri G (2008) Numerical simulation of landslide impulsive waves by incompressible smoothed particle hydrodynamics. Int J Numer Methods Fluids 56:209–232

    Article  MathSciNet  MATH  Google Scholar 

  403. Inutsuka S (2002) Reformulation of smoothed particle hydrodynamics with Riemann solver. J Comput Phys 179:238–267

    Article  MATH  Google Scholar 

  404. Nogueira X, Ramírez L, Clain S, Loubère R, Cueto-Felgueroso L, Colominas I (2016) High-accurate SPH Method with multidimensional optimal order detection limiting. Comput Methods Appl Mech Eng 310:134–155

    Article  MathSciNet  MATH  Google Scholar 

  405. Vila J (1999) On particle weighted methods and smooth particle hydrodynamics. Math Model methods Appl Sci 9:161–209

    Article  MathSciNet  MATH  Google Scholar 

  406. Zhang C, Hu XY, Adams NA (2017) A weakly compressible SPH method based on a low-dissipation riemann solver. J Comput Phys 335:605–620

    Article  MathSciNet  MATH  Google Scholar 

  407. Krimi A, Ramírez L, Khelladi S, Navarrina F, Deligant M, Nogueira X (2020) Improved δ-SPH scheme with automatic and adaptive numerical dissipation. Water 12:2858

    Article  Google Scholar 

  408. Meringolo DD, Marrone S, Colagrossi A, Liu Y (2019) A dynamic δ-SPH model: how to get rid of diffusive parameter tuning. Comput Fluids 179:334–355

    Article  MathSciNet  MATH  Google Scholar 

  409. Marrone S, Antuono M, Colagrossi A, Colicchio G, Le Touzé D, Graziani G (2011) δ-SPH model for simulating violent impact flows. Comput Methods Appl Mech Eng 200:1526–1542

    Article  MathSciNet  MATH  Google Scholar 

  410. Ghadampour Z, Hashemi MR, Talebbeydokhti N, Neill SP, Nikseresht AH (2015) Some numerical aspects of modelling flow around hydraulic structures using incompressible SPH. Comput Math Appl 69:1470–1483. https://doi.org/10.1016/j.camwa.2015.04.001

    Article  MathSciNet  MATH  Google Scholar 

  411. Casulli V, Zanolli P (2002) Semi-implicit numerical modeling of nonhydrostatic free-surface flows for environmental problems. Math Comput Model 36:1131–1149

    Article  MathSciNet  MATH  Google Scholar 

  412. Peterka AJ (1974) Hydraulic design of stilling basins and energy dissipators. Citeseer

  413. Monaghan JJ (1996) Gravity currents and solitary waves. Phys D Nonlinear Phenom 98:523–533

    Article  MATH  Google Scholar 

  414. Khayyer A, Gotoh H (2010) On particle-based simulation of a dam break over a wet bed. J Hydraul Res 48:238–249

    Article  Google Scholar 

  415. Ozbulut M, Yildiz M, Goren O (2014) A numerical investigation into the correction algorithms for SPH method in modeling violent free surface flows. Int J Mech Sci 79:56–65

    Article  Google Scholar 

  416. Shakibaeinia A, Jin Y-C (2011) A mesh-free particle model for simulation of mobile-bed dam break. Adv Water Resour 34:794–807

    Article  Google Scholar 

  417. Liu X, Lin P, Shao S (2014) An ISPH simulation of coupled structure interaction with free surface flows. J Fluids Struct 48:46–61

    Article  Google Scholar 

  418. Shao S (2010) Incompressible SPH flow model for wave interactions with porous media. Coast Eng 57:304–316

    Article  Google Scholar 

  419. Liu X, Xu H, Shao S, Lin P (2013) An improved incompressible SPH model for simulation of wave-structure interaction. Comput Fluids 71:113–123

    Article  MathSciNet  MATH  Google Scholar 

  420. Chorin AJ (1968) Numerical solution of the Navier-Stokes equations. Math Comput 22:745–762

    Article  MathSciNet  MATH  Google Scholar 

  421. Temam R (1969) Sur l’approximation de La Solution Des Équations de Navier-Stokes Par La Méthode Des Pas Fractionnaires (II). Arch Ration Mech Anal 33:377–385

    Article  MATH  Google Scholar 

  422. Koshizuka S, Oka Y, Tamako H (1995) A particle method for calculating splashing of incompressible viscous fluid. American Nuclear Society Inc, La Grange Park, IL (United States)

    Google Scholar 

  423. Koshizuka S, Nobe A, Oka Y (1998) Numerical analysis of breaking waves using the moving particle semi-implicit method. Int J Numer Methods Fluids 26:751–769

    Article  MATH  Google Scholar 

  424. Chorin AJ, Marsden JE, Marsden JE (1990) A mathematical introduction to fluid mechanics, vol 3. Springer

  425. Mohammadi M, Riazi M (2022) Applicable investigation of SPH in characterization of fluid flow in uniform and non-uniform periodic porous media. Sustainability. https://doi.org/10.3390/su142114320

    Article  Google Scholar 

  426. Trask N, Maxey M, Kim K, Perego M, Parks ML, Yang K, Xu J (2015) A scalable consistent second-order SPH solver for unsteady low reynolds number flows. Comput Methods Appl Mech Eng 289:155–178

    Article  MathSciNet  MATH  Google Scholar 

  427. Zainali A, Tofighi N, Yildiz M (2011) Numerical investigation of three-phase flows using incompressible smoothed particle hydrodynamics. In: Proceedings of the PARTICLES II: proceedings of the II international conference on particle-based methods: fundamentals and applications, CIMNE, pp 843–852

  428. Kim J (2007) Phase field computations for ternary fluid Flows. Comput Methods Appl Mech Eng 196:4779–4788

    Article  MathSciNet  MATH  Google Scholar 

  429. Kim J, Lowengrub J (2005) Phase field modeling and simulation of three-phase flows. Interfaces Free Bound 7:435–466

    Article  MathSciNet  MATH  Google Scholar 

  430. Smith KA, Solis FJ, Chopp D (2002) A projection method for motion of triple junctions by level sets. Interfaces Free Bound 4:263–276

    Article  MathSciNet  MATH  Google Scholar 

  431. Bierbrauer F, Bollada PC, Phillips TN (2009) A consistent reflected image particle approach to the treatment of boundary conditions in smoothed particle hydrodynamics. Comput Methods Appl Mech Eng 198:3400–3410

    Article  MathSciNet  MATH  Google Scholar 

  432. Fang J, Owens RG, Tacher L, Parriaux A (2006) A numerical study of the SPH method for simulating transient viscoelastic free surface flows. J Nonnewton Fluid Mech 139:68–84

    Article  MATH  Google Scholar 

  433. Noutcheuwa RK, Owens RG (2012) A new incompressible smoothed particle hydrodynamics-immersed boundary method. Int J Numer Anal Mod B 3:126–167

    MathSciNet  MATH  Google Scholar 

  434. Timmermans LJP, Minev PD, Van De Vosse FN (1996) An approximate projection scheme for incompressible flow using spectral elements. Int J Numer Methods Fluids 22:673–688

    Article  MathSciNet  MATH  Google Scholar 

  435. Peskin CS (2002) The immersed boundary method. Acta Numer 11:479–517

    Article  MathSciNet  MATH  Google Scholar 

  436. Kim J, Moin P (1985) Application of a fractional-step method to incompressible Navier-Stokes equations. J Comput Phys 59:308–323

    Article  MathSciNet  MATH  Google Scholar 

  437. Pozorski J, Wawreńczuk A (2002) SPH computation of incompressible viscous flows. J Theor Appl Mech 40:917–937

    Google Scholar 

  438. Ellero M, Serrano M, Espanol P (2007) Incompressible smoothed particle hydrodynamics. J Comput Phys 226:1731–1752

    Article  MathSciNet  MATH  Google Scholar 

  439. Szewc K, Pozorski J, Minier J (2012) Analysis of the incompressibility constraint in the smoothed particle hydrodynamics method. Int J Numer Methods Eng 92:343–369

    Article  MathSciNet  MATH  Google Scholar 

  440. Sigalotti LDG, Klapp J, Sira E, Meleán Y, Hasmy A (2003) SPH simulations of time-dependent poiseuille flow at low Reynolds numbers. J Comput Phys 191:622–638. https://doi.org/10.1016/S0021-9991(03)00343-7

    Article  MATH  Google Scholar 

  441. Takeda H, Miyama SM, Sekiya M (1994) Numerical simulation of viscous flow by smoothed particle hydrodynamics. Prog Theor Phys 92:939–960

    Article  Google Scholar 

  442. Vakilha M, Manzari MT (2008) Modelling of Power-law fluid flow through porous media using smoothed particle hydrodynamics. Transp Porous Media 74:331–346

    Article  MathSciNet  Google Scholar 

  443. Fredini PSR, Limache AC (2013) Evaluation of weakly compressible SPH variants using derived analytical solutions of Taylor-Couette flows. Comput Math Appl 66:304–317

    Article  MathSciNet  MATH  Google Scholar 

  444. Becker M, Teschner M (2007) Weakly compressible SPH for free surface flows. In: Proceedings of the proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 209–217

  445. Nasiri H, Abdollahzadeh Jamalabadi MY, Sadeghi R, Safaei MR, Nguyen TK, Safdari Shadloo M (2019) A smoothed particle hydrodynamics approach for numerical simulation of nano-fluid flows. J Therm Anal Calorim 135:1733–1741

    Article  Google Scholar 

  446. Skillen A, Lind S, Stansby PK, Rogers BD (2013) Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalised Fickian smoothing applied to body-water slam and efficient wave-body interaction. Comput Methods Appl Mech Eng 265:163–173

    Article  MathSciNet  MATH  Google Scholar 

  447. Zhang C, Hu XY, Adams NA (2017) A generalized transport-velocity formulation for smoothed particle hydrodynamics. J Comput Phys 337:216–232

    Article  MathSciNet  MATH  Google Scholar 

  448. Gomez-Gesteira M, Rogers BD, Dalrymple RA, Crespo AJC (2010) State-of-the-art of classical SPH for free-surface flows. J Hydraul Res 48:6–27

    Article  Google Scholar 

  449. Ramachandran P, Puri K (2019) Entropically damped artificial compressibility for SPH. Comput Fluids 179:579–594

    Article  MathSciNet  MATH  Google Scholar 

  450. Koumoutsakos P (2005) Multiscale flow simulations using particles. Annu Rev Fluid Mech 37:457–487

    Article  MathSciNet  MATH  Google Scholar 

  451. Zimmermann S, Koumoutsakos P, Kinzelbach W (2001) Simulation of pollutant transport using a particle method. J Comput Phys 173:322–347

    Article  MATH  Google Scholar 

  452. Chaniotis AK, Frouzakis CE, Lee JC, Tomboulides AG, Poulikakos D, Boulouchos K (2003) Remeshed smoothed particle hydrodynamics for the simulation of laminar chemically reactive flows. J Comput Phys 191:1–17

    Article  MATH  Google Scholar 

  453. Cha S-H, Whitworth AP (2003) Implementations and tests of godunov-type particle hydrodynamics. Mon Not R Astron Soc 340:73–90

    Article  Google Scholar 

  454. Omang M, Børve S, Trulsen J (2006) SPH in spherical and cylindrical coordinates. J Comput Phys 213:391–412

    Article  MathSciNet  MATH  Google Scholar 

  455. Li YX, Chen YM, Wei JX, He XY, Zhang HT, Zhang WS (2006) A study on the relationship between porosity of the cement paste with mineral additives and compressive strength of mortar based on this paste. Cem Concr Res 36:1740–1743. https://doi.org/10.1016/j.cemconres.2004.07.007

    Article  Google Scholar 

  456. Espanol P, Revenga M (2003) Smoothed dissipative particle dynamics. Phys Rev E 67:26705

    Article  Google Scholar 

  457. Gray JP, Monaghan JJ, Swift R (2001) SPH elastic dynamics. Comput Methods Appl Mech Eng 190:6641–6662

    Article  MATH  Google Scholar 

  458. Zel’Dovich YB, Raizer YP (2002) Physics of shock waves and high-temperature hydrodynamic phenomena. Courier Corporation, ISBN 0486420027

  459. Sedov LI, Volkovets AG (2018) Similarity and dimensional methods in mechanics. CRC press, ISBN 0203739736

  460. Dyka CT, Randles PW, Ingel R (1997) Stress points for tension instability in SPH. Int J Numer Methods Eng 40:2325–2341

    Article  MATH  Google Scholar 

  461. Dyka CT, Ingel RP (1994) Addressing tension instability in SPH methods. Naval Research Lab Washington DC

  462. Vignjevic R, Campbell J, Libersky L (2000) A treatment of zero-energy modes in the smoothed particle hydrodynamics method. Comput Methods Appl Mech Eng 184:67–85

    Article  MathSciNet  MATH  Google Scholar 

  463. Crespo AJC. Application of the smoothed particle hydrodynamics model sphysics to free-surface hydrodynamics 2008

  464. Liu MB, Liu GR, Zhou LW, Chang J (2015) Dissipative particle dynamics (DPD): an overview and recent developments. Arch Comput Methods Eng 22:529–556

    Article  MathSciNet  MATH  Google Scholar 

  465. Jahanshaloo L, Sidik NAC, Fazeli A, HA MP (2016) An overview of boundary implementation in lattice boltzmann method for computational heat and mass transfer. Int Commun Heat Mass Transf 78:1–12

    Article  Google Scholar 

  466. Zhang M (2010) Simulation of surface tension in 2D and 3D with smoothed particle hydrodynamics method. J Comput Phys 229:7238–7259

    Article  MathSciNet  MATH  Google Scholar 

  467. Yamada Y, Sakai M (2013) Lagrangian-Lagrangian simulations of solid-liquid flows in a bead mill. Powder Technol 239:105–114

    Article  Google Scholar 

  468. Shadloo MS, Yildiz M (2011) Numerical modeling of Kelvin-Helmholtz instability using smoothed particle hydrodynamics. Int J Numer Methods Eng 87:988–1006

    Article  MathSciNet  MATH  Google Scholar 

  469. Barbot E, Vidic NS, Gregory KB, Vidic RD (2013) Spatial and temporal correlation of water quality parameters of produced waters from devonian-age shale following hydraulic fracturing. Environ Sci Technol 47:2562–2569

    Article  Google Scholar 

  470. Wang S, Shen L, Maggi F, El-Zein A, Nguyen GD (2017) Uniaxial compressive behavior of partially saturated granular media under high strain rates. Int J Impact Eng 102:156–168

    Article  Google Scholar 

  471. Akinci N, Akinci G, Teschner M (2013) Versatile surface tension and adhesion for SPH fluids. ACM Trans Graph 32:1–8

    Article  Google Scholar 

  472. Su J, Wang L, Gu Z, Zhang Y, Chen C (2018) Advances in pore-scale simulation of oil reservoirs. Energies 11:1132

    Article  Google Scholar 

  473. Szewc K, Development of smoothed particle hydrodynamics approach for modelling of multiphase flows with interfaces 2013

  474. Andersson B, Jakobsson S, Mark A, Edelvik F, Davidson L (2010) Modeling surface tension in Sph by interface reconstruction using radial basis functions. In: Proceedings of the proc. of the 5th international SPHERIC workshop, vol 3

  475. Chen JK, Beraun JE (2000) A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems. Comput Methods Appl Mech Eng 190:225–239

    Article  MATH  Google Scholar 

  476. Español P (1997) Fluid particle dynamics: a synthesis of dissipative particle dynamics and smoothed particle dynamics. EPL Europhys Lett 39:605

    Article  Google Scholar 

  477. Hu D, Long T, Xiao Y, Han X, Gu Y (2014) Fluid-structure interaction analysis by coupled FE–SPH model based on a novel searching algorithm. Comput Methods Appl Mech Eng 276:266–286

    Article  MathSciNet  MATH  Google Scholar 

  478. Zhang AM, Ming FR, Wang SP (2013) Coupled SPHS–BEM method for transient fluid-structure interaction and applications in underwater impacts. Appl Ocean Res 43:223–233

    Article  Google Scholar 

  479. Brackbill JU, Ruppel HM (1986) FLIP: a method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. J Comput Phys 65:314–343

    Article  MathSciNet  MATH  Google Scholar 

  480. Sulsky D, Chen Z, Schreyer HL (1994) A Particle Method for History-Dependent materials. Comput Methods Appl Mech Eng 118:179–196

    Article  MathSciNet  MATH  Google Scholar 

  481. Morris JP (1996) A study of the stability properties of smooth particle hydrodynamics. Publ Astron Soc Aust 13:97–102

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the Iranian Center of International Science and Technology Cooperation under Grant Agreement No 11/53307 dated 06 January 2021 hosted by Shiraz University. The authors also express their gratitude to the staff at the School of Chemical and Petroleum Engineering, Shiraz University, for sharing their experience. The first author also appreciates the academics at the Faculty of Petroleum and Petrochemical Engineering, Hakim Sabzevari University, for being supportive.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Bagheri.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, M., Mohammadi, M. & Riazi, M. A review of smoothed particle hydrodynamics. Comp. Part. Mech. (2023). https://doi.org/10.1007/s40571-023-00679-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40571-023-00679-7

Keywords

Navigation