Skip to main content
Log in

The diversity and abundance of soil macrofauna under different agroforestry practices in the drylands of southern Ethiopia

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

The conversion of natural lands to agricultural uses is a significant threat to soil biodiversity. Within agriculture, monoculture based systems are the most common which often result in low biodiversity because they impact the abundance, diversity, and composition of soil macrofauna (SMF). The objective of this paper was to analyze SMF abundance and diversity across different agroforestry practices (AFP) in the drylands of southern Ethiopia. The soil monolith and soil samples were collected from homegarden, cropland, woodlot, and trees on soil and water conservation based AFP using the standard Tropical Soil Biology and Fertility Institute manual, and the identification was done based on morphological characteristics and standard identification keys. The abundance, occurrence, and community composition of SMF were significantly different across the different AFPs (P < 0.05). In this study, 378 SMF belonging to 13 families, including unnamed were identified. The soil ecosystem of AFP was dominated by earthworms (relative abundance = 0.43), followed by termites (relative abundance = 0.12). The homegarden AFP type had a significantly higher number of SMF occurrence index of 46.03 (174), followed by woodlot, 26.72 (101) practices, and the lowest was recorded under cropland, 12.70 (48). The abundance, diversity, richness, and similarity of SMF were significantly related to soil total nitrogen and organic carbon. Phosphorus and pH were significantly related to the abundance and richness of SMF. The homegarden and woodlot AFP types were suitable for SMF biodiversity conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abebe T (2005) Diversity in homegarden agroforestry systems of Southern Ethiopia, Wageningen University and Research

  • Abebe T (2013) Determinants of crop diversity and composition in Enset-coffee agroforestry homegardens of Southern Ethiopia, urn:nbn:de:hebis:34–2013030542580

  • Adane F, Legesse A, Weldeamanuel T, Belay T (2019) The contribution of a fruit tree-based agroforestry system for household income to smallholder farmers in Dale District, Sidama Zone, Southern Ethiopia. Adv Plants Agric Res 9:78–84. https://doi.org/10.1007/s10457-009-9246-6

    Article  Google Scholar 

  • Allan E, Manning P, Alt F, Binkenstein J, Blaser S, Blüthgen N, Böhm S, Grassein F, Hölzel N, Klaus VH (2015) Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol Lett 18:834–843. https://doi.org/10.1111/ele.12469

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson J, Ingram J (1993) Tropical soil biology and fertility: a handbook of methods. CAB International, Wallingford, UK, p 12

    Google Scholar 

  • Ayuke F, Karanja N, Muya E, Musombi B, Mungatu J, Nyamasyo G (2009) Macrofauna diversity and abundance across different land use systems in Embu, Kenya. Trop Subtrop Agroeco 11:371–384

    Google Scholar 

  • Ayuke FO, Brussaard L, Vanlauwe B, Six J, Lelei DK, Kibunja C, Pulleman M (2011) Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation. Appl Soil Ecol 48:53–62. https://doi.org/10.1016/j.apsoil.2011.02.001

    Article  Google Scholar 

  • Barber NA, Marquis RJ (2011) Leaf quality, predators, and stochastic processes in the assembly of a diverse herbivore community. Ecology 92:699–708. https://doi.org/10.1890/10-0125.1

    Article  PubMed  Google Scholar 

  • Barrios E (2007) Soil biota, ecosystem services and land productivity. Ecol Econ 64:269–285. https://doi.org/10.1016/j.ecolecon.2007.03.004

    Article  Google Scholar 

  • Barrios E, Cobo JG, Rao IM, Thomas RJ, Amézquita E, Jiménez JJ, Rondón MA (2005) Fallow management for soil fertility recovery in tropical Andean agroecosystems in Colombia. Agr Ecosyst Environ 110:29–42. https://doi.org/10.1016/j.agree.2005.04.009

    Article  Google Scholar 

  • Barros E, Pashanasi B, Constantino R, Lavelle P (2002) Effects of land-use system on the soil macrofauna in western Brazilian Amazonia. Biol Fertil Soils 35:338–347. https://doi.org/10.1007/s00374-002-0479-z

    Article  Google Scholar 

  • Beshah T (2003) Understanding farmers: explaining soil and water conservation in Konso, Wolaita and Wello, Ethiopia, Wageningen University and Research

  • Bouyoucos GJ (1962) Hydrometer method improved for making particle size analyses of soils. Agron J 54:464–465. https://doi.org/10.2134/agronj1962.00021962005400050028

    Article  Google Scholar 

  • Braschler B, Gilgado JD, Zwahlen V, Rusterholz H-P, Buchholz S, Baur B (2020) Ground-dwelling invertebrate diversity in domestic gardens along a rural-urban gradient: Landscape characteristics are more important than garden characteristics. PLoS ONE 15:e0240061. https://doi.org/10.1371/journal.pone.0240061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brussaard L, De Ruiter PC, Brown GG (2007) Soil biodiversity for agricultural sustainability. Agric Ecosyst Environ 121:233–244. https://doi.org/10.1016/j.agee.2006.12.013

    Article  Google Scholar 

  • Bufebo B, Elias E, Getu E (2021) Abundance and diversity of soil invertebrate macro-fauna in different land uses at Shenkolla watershed, South Central Ethiopia. J Basic Appl Zool 82:1–12. https://doi.org/10.1186/s41936-021-00206

    Article  Google Scholar 

  • Bunyangha J, Muthumbi AW, Gichuki NN, Majaliwa MJ, Egeru A (2022) Soil macroinvertebrate response to paddy rice farming pathways in mpologoma catchment. Uganda Agron 12:312. https://doi.org/10.3390/agronomy12020312

    Article  CAS  Google Scholar 

  • Ciarfaglia A, Scopa A, Camele I, Curci M, Crecchio C, Xiloyannis C, Palese A (2014) Soil microbial diversity and activity in a M editerranean olive orchard using sustainable agricultural practices. Soil Use Manag 30:160–167. https://doi.org/10.1111/sum.12097

    Article  Google Scholar 

  • Cluzeau D, Guernion M, Chaussod R, Martin-Laurent F, Villenave C, Cortet J, Ruiz-Camacho N, Pernin C, Mateille T, Philippot L (2012) Integration of biodiversity in soil quality monitoring: baselines for microbial and soil fauna parameters for different land-use types. Eur J Soil Biol 49:63–72. https://doi.org/10.1016/j.ejsobi.2011.11.003

    Article  Google Scholar 

  • Da Silva Moço M, Da Gama-Rodrigues E, Da Gama-Rodrigues A, Machado R, Baligar V (2009) Soil and litter fauna of cacao agroforestry systems in Bahia, Brazil. Agrofor Syst 76:127–138. https://doi.org/10.1007/s10457-008-9178-6

    Article  Google Scholar 

  • Dagnachew M, Moges A, Kebede A, Abebe A (2020) Effects of soil and water conservation measures on soil quality indicators: the case of Geshy Subcatchment, Gojeb River Catchment, Ethiopia. Appl Environ Soil Sci

  • Dávila GDLCC, Iborra GML (2018) Ecological characterization of soil macrofauna in two evergreen forest sites at El Salón, Sierra del Rosario. Cuba. Revista Bosque 39:363–373

    Google Scholar 

  • De Valença AW, Vanek SJ, Meza K, Canto R, Olivera E, Scurrah M, Fonte LEA, SJ (2017) Land use as a driver of soil fertility and biodiversity across an agricultural landscape in the Central Peruvian Andes. Ecol Appl 27:1138–1154. https://doi.org/10.1002/eap.1508

    Article  PubMed  Google Scholar 

  • De Vries FT, Thébault E, Liiri M, Birkhofer K, Tsiafouli MA, Bjørnlund L, Bracht Jørgensen H, Brady MV, Christensen S, De Ruiter PC (2013) Soil food web properties explain ecosystem services across European land use systems. Proc Natl Acad Sci 110:14296–14301. https://doi.org/10.1073/pnas.1305198110

    Article  PubMed  PubMed Central  Google Scholar 

  • Díaz S, Settele J, Brondízio ES, Ngo HT, Agard J, Arneth A, Balvanera P, Brauman KA, Butchart SH, Chan KM (2019) Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366:3100. https://doi.org/10.1126/science.aax3100

    Article  CAS  Google Scholar 

  • Diserud OH, Ødegaard F (2007) A multiple-site similarity measure. Biol Lett 3:20–22. https://doi.org/10.1098/rsbl.2006.0553

    Article  PubMed  Google Scholar 

  • Eaton ER, Kaufman K (2007) Kaufman field guide to insects of North America, Houghton Mifflin Harcourt

  • Eyasu E (2016) Soil of Ethiopian highlands: geomorphology and properties. Cascape Project, Altera, Wageningen University and Research Centre (Wageningen UR), The Netherlands, p 385

    Google Scholar 

  • Fitzherbert EB, Struebig MJ, Morel A, Danielsen F, Brühl CA, Donald PF, Phalan B (2008) How will oil palm expansion affect biodiversity? Trends Ecol Evol 23:538–545. https://doi.org/10.1016/j.tree.2008.06.012

    Article  PubMed  Google Scholar 

  • Govers G, Merckx R, Van Oost K, Van Wesemael B (2012) Soil organic carbon management for global benefits: a discussion paper. Workshop on soil organic carbon benefits: a scoping study, 10–12, http://www.stapgef.org/?p=534.

  • Guarderas Valverde AP, Trávez K, Boeraev F, Cornelis J-T, Dufrêne M (2022) Native forest conversion alters soil macroinvertebrate diversity and soil quality in tropical mountain landscapes of northern Ecuador, http://www.dspace.uce.edu.ec/handle/25000/28463.

  • Guerra CA, Berdugo M, Eldridge DJ, Eisenhauer N, Singh BK, Cui H, Abades S, Alfaro FD, Bamigboye AR, Bastida F (2022) Global hotspots for soil nature conservation. Nature 610:693–698

    Article  CAS  PubMed  Google Scholar 

  • Hao T, Zhu Q, Zeng M, Shen J, Shi X, Liu X, Zhang F, de Vries W (2020) Impacts of nitrogen fertilizer type and application rate on soil acidification rate under a wheat-maize double cropping system. J Environ Manage 270:110888

    Article  CAS  PubMed  Google Scholar 

  • Hinds A, Lowe L (1980) Application of the Berthelot reaction to the determination of ammonium-N in soil extracts and soil digests. Commun Soil Sci Plant Anal 11:469–475. https://doi.org/10.1080/00103628009367054

    Article  CAS  Google Scholar 

  • Hoehn P, Steffan-Dewenter I, Tscharntke T (2010) Relative contribution of agroforestry, rainforest and openland to local and regional bee diversity. Biodiv Conserv 19:2189–2200. https://doi.org/10.1007/s10531-010-9831-z

    Article  Google Scholar 

  • Huerta E, Van Der Wal H (2012) Soil macroinvertebrates’ abundance and diversity in home gardens in Tabasco, Mexico, vary with soil texture, organic matter and vegetation cover. Eur J Soil Biol 50:68–75. https://doi.org/10.1016/j.ejsoobi.2011.12.007

    Article  Google Scholar 

  • Jemal OM, Callo-Concha D, Van Noordwijk M (2021) Coffee agroforestry and the food and nutrition security of small farmers of south-western Ethiopia. Front Sustain Food Syst 5:608868. https://doi.org/10.3389/fsufs.2021.608868/full

    Article  Google Scholar 

  • Jouquet P, Dauber J, Lagerlöf J, Lavelle P, Lepage M (2006) Soil invertebrates as ecosystem engineers: intended and accidental effects on soil and feedback loops. Appl Soil Ecol 32:153–164. https://doi.org/10.1016/japsoil.2005.07.004

    Article  Google Scholar 

  • Karanja N, Ayuke F, Muya E, Musombi B, Nyamasyo G (2009) Soil macrofauna community structure across land use systems of Taita, Kenya. Trop Subtrop Agroecosyst 11:385–396

    Google Scholar 

  • Katayama N, Bouam I, Koshida C, Baba YG (2019) Biodiversity and yield under different land-use types in orchard/vineyard landscapes: a meta-analysis. Biol Cons 229:125–133. https://doi.org/10.1016/j.biocon.2018.11.020

    Article  Google Scholar 

  • Laekemariam F, Kibret K, Mamo T, Karltun E, Gebrekidan H (2016) Physiographic characteristics of agricultural lands and farmers’ soil fertility management practices in Wolaita zone, Southern Ethiopia. Environ Syst Res 5:1–15. https://doi.org/10.1186/s40068-016-0076-z

    Article  Google Scholar 

  • Landon JR (1991) Tropical soil manual: a handbook for soilurvey and agricultural land evaluation in the tropics and sub tropics. Longman Scientific and Technical, Longman Group, UK Ltd

  • Lavelle P, Mathieu J, Spain A, Brown G, Fragoso C, Lapied E, De Aquino A, Barois I, Barrios E, Barros ME (2022) Soil macroinvertebrate communities: a world-wide assessment. Glob Ecol Biogeogr 31:1261–1276. https://doi.org/10.1111/geb.13492

    Article  Google Scholar 

  • Liu L, Greaver TL (2010) A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecol Lett 13(7):819–828

    Article  PubMed  Google Scholar 

  • Lubbers IM, Van Groenigen KJ, Fonte SJ, Six J, Brussaard L, Van Groenigen JW (2013) Greenhouse-gas emissions from soils increased by earthworms. Nat Clim Change 3:187–194

    Article  CAS  Google Scholar 

  • Lukina N, Orlova M, Isaeva L (2011) Forest soil fertility: the base of relationships between soil and vegetation. Contemp Probl Ecol 4:725–733. https://doi.org/10.1134/S1995425511070046

    Article  Google Scholar 

  • Malo AF, Garde JJ, Soler AJ, García AJ, Gomendio M, Roldan ER (2005) Male fertility in natural populations of red deer is determined by sperm velocity and the proportion of normal spermatozoa. Biol Reprod 72(4):822–829

    Article  CAS  PubMed  Google Scholar 

  • Manetti PL, López AN, Clemente NL, Faberi A (2010) Tillage system does not affect soil macrofauna in southeastern Buenos Aires province, Argentina. Span J Agric Res 8:377–384. https://doi.org/10.5424/sjar/2010082-1189

    Article  Google Scholar 

  • Manhães CMC, Gama-Rodrigues EF, Silva Moço MK, Gama-Rodrigues AC (2013) Meso-and macrofauna in the soil and litter of leguminous trees in a degraded pasture in Brazil. Agrofor Syst 87:993–1004. https://doi.org/10.1007/s10457-013-9614-0

    Article  Google Scholar 

  • Marichal R, Praxedes C, Decaëns T, Grimaldi M, Oszwald J, Brown GG, Desjardins T, Da Silva Junior ML, Martinez AF, Oliveira MN (2017) Earthworm functional traits, landscape degradation and ecosystem services in the Brazilian Amazon deforestation arc. Eur J Soil Biol 83:43–51. https://doi.org/10.1016/j.ejsobi.2017.09.003

    Article  Google Scholar 

  • Matos PS, Fonte SJ, Lima SS, Pereira MG, Kelly C, Damian JM, Fontes MA, Chaer GM, Brasil FC, Zonta E (2020) Linkages among soil properties and litter quality in agroforestry systems of southeastern Brazil. Sustainability 12:9752. https://doi.org/10.3390/su12229752

    Article  CAS  Google Scholar 

  • Mbenoun Masse PS, Nzoko Fiemapong AR, Vandenspiegel D, Golovatch SI (2018) Diversity and distribution of millipedes (Diplopoda) in the Campo Ma’an National Park, southern Cameroon. Afr J Ecol 56:73–80. https://doi.org/10.1111/aje.12418

    Article  Google Scholar 

  • Melman DA, Kelly C, Schneekloth J, Calderón F, Fonte SJ (2019) Tillage and residue management drive rapid changes in soil macrofauna communities and soil properties in a semiarid cropping system of Eastern Colorado. Appl Soil Ecol 143:98–106. https://doi.org/10.1016/j.apsoil.2019.05.022

    Article  Google Scholar 

  • Menta C (2012) Soil fauna diversity-function, soil degradation, biological indices, soil restoration. Biodiv Conserv Utilizat Diver World. https://doi.org/10.5772/51091

    Article  Google Scholar 

  • Mesfin A (1998) Nature and management of Ethiopian soils. Alemaya University of Agriculture, Ethiopia, p 272

    Google Scholar 

  • Molla A, Kewessa G (2015) Woody species diversity in traditional agroforestry practices of Dellomenna District, Southeastern Ethiopia: implication for maintaining native woody species. Int J Biodi. https://doi.org/10.1155/2015/643031

    Article  Google Scholar 

  • Moreira FM, Bignell DE, Huising EJ (2008) A handbook of tropical soil biology: sampling and characterization of below-ground biodiversity, Earthscan

  • Musokwa M, Mafongoya P, Zungu M, Kondwakwenda A (2020) Soil macro fauna indices and their association with physical soil properties under agroforestry systems. Int J Agrofor Silvicult 8:001–009. https://doi.org/10.46882/IJAS/1108

    Article  CAS  Google Scholar 

  • Mutema M, Mafongoya P, Nyagumbo I, Chikukura L (2013) Effects of crop residues and reduced tillage on macrofauna abundance

  • Nair P, Garrity D (2012) Agroforestry research and development: the way forward. Agrofor Fut Glob Land Use 9:285–311. https://doi.org/10.1007/978-94-007-4676-3_6

    Article  Google Scholar 

  • Nyawira Muchane M, Karanja D, Mwangi Wambugu G, Mwangi Mutahi J, Masiga CW, Mugoya C, Muchai M (2012) Land use practices and their implications on soil macro-fauna in Maasai Mara ecosystem, https://nru.uncst.go.ug/xmlui/handle/123456789/2524

  • Olsen S (1982) Anion resin extractable phosphorus. Meth Soil Anal 2(423–424):1570572700155918800

    Google Scholar 

  • Omondi C, Ogolla FO, Odhiambo C Effect of land use on distribution and abundance of ground dwelling macroinvertebrates in Kirimiri Forest in Embu County, Kenya

  • Orgiazzi A, Bardgett RD, Barrios E (2016) Global soil biodiversity atlas, European Commission

  • Pauli N, Barrios E, Conacher A, Oberthür T (2011) Soil macrofauna in agricultural landscapes dominated by the Quesungual Slash-and-Mulch Agroforestry System western Honduras. Appl Soil Ecol 47:119–132. https://doi.org/10.1016/j.apsoil.2010.11.005

    Article  Google Scholar 

  • Pauli N (2008) Environmental influences on the spatial and temporal distribution of soil macrofauna in a smallholder agriforestry system of western Honduras, https://research-repository.uwa.edu.au/en/

  • Pielou EC (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144. https://doi.org/10.1016/0022-5193(66)90013-0

    Article  Google Scholar 

  • Prinandhika GM, Dewi WS (2023) Relationship of Macrofauna and Soil Organic Carbon in Various Types of Agroforestry, Sumberejo Village, Batuwarno District, Wonogiri Regency. In: IOP Conference Series: Earth and Environmental Science (Vol. 1168, No. 1, p. 012020). IOP Publishing

  • Rojas-Múnera DM, Feijoo-Martínez A, Molina-Rico LJ, Zúñiga MC, Quintero H (2021) Differential impact of altitude and a plantain cultivation system on soil macroinvertebrates in the Colombian Coffee Region. Appl Soil Ecol 164:103931. https://doi.org/10.1016/j.apsoil.2021.103931

    Article  Google Scholar 

  • Rousseaua L, Fonteb S, Téllez O, Van Der Hoek R, Lavellea P (2013) Soil macrofauna as indicators of soil quality and land use impacts in smallholder agroecosystems of western Nicaragua. Ecol Ind 27:71–82. https://doi.org/10.1016/j.ecolind.2012.11.020

    Article  CAS  Google Scholar 

  • Ruiz-Cobo DH, Bueno-Villegas J, Feijoo-Martínez A (2010) Uso de la tierra y diversidades alfa, beta y gamma de diplópodos en la cuenca del río Otún. Colombia Universitas Scientiarum 15(1):59–67

    Article  Google Scholar 

  • Sahilu M (2017) Agroforestry home gardens in Ethiopia: rural livelihoods in transition. Doctoral Dissertation. Swedish University of Agricultural Sciences, Uppsala

  • Seeber J, Steinwandter M, Tasser E, Guariento E, Peham T, Rüdisser J, Schlick-Steiner BC, Steiner FM, Tappeiner U, Meyer E (2022) Distribution of soil macrofauna across different habitats in the Eastern European Alps. Sci Data 9:632

    Article  PubMed  PubMed Central  Google Scholar 

  • Shannon CE (1949) The mathematical theory of communication by CE Shannon and W. Weaver

  • Solórzano Flores AS (2020) Comparación de la diversidad vegetal y calidad orgánica del suelo entre un remanente de bosque nativo y vegetación introducida, Parroquia La Esperanza, Cantón Pedro Moncayo, Pichincha-Ecuador (Bachelor's thesis, Quito: UCE)

  • Suárez LR, Josa YTP, Samboni EJA, Cifuentes KDL, Bautista EHD, Salazar JCS (2018) Soil macrofauna under different land uses in the Colombian Amazon. Pesquisa Agropecuaria Brasileira 53:1383–1391. https://doi.org/10.1590/S0100-204X2018001200011

    Article  Google Scholar 

  • Suárez LR, Salazar JCS, Casanoves F, Bieng MAN (2021) Cacao agroforestry systems improve soil fertility: comparison of soil properties between forest, cacao agroforestry systems, and pasture in the Colombian Amazon. Agr Ecosyst Environ 314:107349. https://doi.org/10.1016/j.agee.2021.107349

    Article  CAS  Google Scholar 

  • Sylvain TBC, Martinez GA, Hortense BS, Richmond AA, Senan S, Souleymane K, Yao T (2019) Distribution of myriapods (Chilopods and Diplopods) according to four modes of land use (Daloa: Côte d’Ivoire), PartH/7–3–214–852.pdf.

  • Sylvain ZA, Wall DH (2011) Linking soil biodiversity and vegetation: implications for a changing planet. Am J Bot 98:517–527. https://doi.org/10.3732/ajb.1000305

    Article  PubMed  Google Scholar 

  • Tao H-H, Slade EM, Willis KJ, Caliman J-P, Snaddon JL (2016) Effects of soil management practices on soil fauna feeding activity in an Indonesian oil palm plantation. Agr Ecosyst Environ 218:133–140. https://doi.org/10.1016/j.agee.2015.11.012

    Article  Google Scholar 

  • Tauro T, Mtambanengwe F, Mpepereki S, Mapfumo P (2021) Soil macrofauna response to integrated soil fertility management under maize monocropping in Zimbabwe. Heliyon 7:e08567. https://doi.org/10.1016/j.heliyon.2021.e08567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tega M, Bojago E (2023) Farmer’s perceptions of agroforestry practices, contributions to rural household farm income, and their determinants in Sodo Zuria District Southern Ethiopia. Int J for Res. https://doi.org/10.1155/2023/5439171

    Article  Google Scholar 

  • Tesemma MN (2013) The indigenous agroforestry systems of the south-eastern Rift Valley escarpment, Ethiopia: Their biodiversity, carbon stocks, and litterfall, http://urn.fi/URN:ISBN:978-952-10-9415-6

  • Thiele-bruhn S, Bloem J, De Vries FT, Kalbitz K, Wagg C (2012) Linking soil biodiversity and agricultural soil management. Curr Opin Environ Sustain 4:523–528. https://doi.org/10.1016/j.cosust.2012.06.004

    Article  Google Scholar 

  • Torralba M, Fagerholm N, Burgess PJ, Moreno G, Plieninger T (2016) Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agr Ecosyst Environ 230:150–161

    Article  Google Scholar 

  • Wagg C, Bender SF, Widmer F, Van Der Heijden MG (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci 111:5266–5270. https://doi.org/10.1073/pnas.1320054111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  • Welemariam M, Kebede F, Bedadi B, Birhane E (2018) The effect of community-based soil and water conservation practices on abundance and diversity of soil macroinvertebrates in the northern highlands of Ethiopia. Agronomy 8:56. https://doi.org/10.1186/s40066-018-0193-1

    Article  Google Scholar 

  • Wibowo YS, Kesumadewi AAI, Suwastika A (2021) Soil macrofauna community structure and biodiversity on organic and conventional vegetable land in Bedugul, Bali Island. Int J Educ Res 9:103–114

    Google Scholar 

  • Wilson EO (1987) The little things that run the world (the importance and conservation of invertebrates). JSTOR, https://www.jstor.org/stable/2386020.

  • Yasin H, Tekalign W (2022) A study of composition and diversity variation of avifauna along with different types of agroforestry system in Kibet town, Southern Ethiopia. Revista chilena de historia natural, 95

  • Yu G, Yang X (2007) Characteristics of litter and soil arthropod communities at different suc-cessional stages of tropical forests. Biodiv Sci 15:188. https://doi.org/10.1360/biodiv.060292

    Article  CAS  Google Scholar 

  • Zettler JA, Mateer SC, Link-Pérez M, Bailey JB, Demars G, Ness T (2016) To key or not to key: a new key to simplify & improve the accuracy of insect identification. Am Biol Teach 78:626–633. https://doi.org/10.1525/abt.2016.78.8.626

    Article  Google Scholar 

  • Zhang R, Pu L, Li J, Zhang J, Xu Y (2016) Landscape ecological security response to land use change in the tidal flat reclamation zone, China. Environ Monit Assess 188:1–10

    Article  PubMed  Google Scholar 

  • Zhou Y, Liu C, Ai N, Tuo X, Zhang Z, Gao R, Qin J, Yuan C (2022) Characteristics of soil macrofauna and its coupling relationship with environmental factors in the loess area of Northern Shaanxi. Sustainability 14:2484. https://doi.org/10.3390/su14052484

    Article  CAS  Google Scholar 

  • Zhu X, Zhu B (2015) Diversity and abundance of soil fauna as influenced by long-term fertilization in cropland of purple soil, China. Soil Tillage Res 146:39–46

    Article  Google Scholar 

  • Ziadi N, Bélanger G, Cambouris AN, Tremblay N, Nolin MC, Claessens A (2007) Relationship between P and N concentrations in corn. Agron J 99:833–841. https://doi.org/10.2134/agronj2006.0199

    Article  CAS  Google Scholar 

  • Zulu SG, Motsa NM, Sithole NJ, Magwaza LS, Ncama K (2022) Soil Macrofauna abundance and taxonomic richness under long-term no-till conservation agriculture in a semi-arid environment of South Africa. Agronomy 12:722. https://doi.org/10.3390/agronomy12030722

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful and appreciate Arab Minch University Zoological Laboratory’s technical and genuine facility assistance. Moreover, the Hawassa soil laboratory center is also duly acknowledged. We acknowledge the Institute of International Education-Scholars Rescue Fund (IIE-SRF), Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), and NORGLOBAL 2 project “Towards a climate-smart policy and management framework for conservation and use of dry forest ecosystem services and resources in Ethiopia [grant number: 303600]” for supporting the research stay of Emiru Birhane at NMBU. The reviewers on the previous version of the manuscript are duly acknowledged for their contribution in improving the current version of the manuscript.

Funding

There was no specific fund for this research.

Author information

Authors and Affiliations

Authors

Contributions

NM worked on data collection, data analysis, and writing the original draft, EB helped highly in all case, and ST, ZB, JJL, APS and AA helped in result interpretation and commenting as well. The publishable versions of this manuscript have been read by all authors.

Corresponding authors

Correspondence to Nebiyou Masebo or Emiru Birhane.

Ethics declarations

Conflict of interest

The author declares that there exist no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masebo, N., Birhane, E., Takele, S. et al. The diversity and abundance of soil macrofauna under different agroforestry practices in the drylands of southern Ethiopia. Agroforest Syst 98, 441–459 (2024). https://doi.org/10.1007/s10457-023-00921-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-023-00921-4

Keywords

Navigation