Skip to main content
Log in

Entropy and Exergy Analysis in an Experimental Thermal System Used GO–DW Nanofluid Having Straight Copper Pipes with Different Diameters

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

Entropy and exergy analysis of a thermal system are the most powerful tools that can be employed to specify the optimum operating conditions of that system and utilization rate from the system. In the experimental thermal system in this work, entropy generation and exergy analyzes of GO–DW nanofluids have been carried out in straight copper pipes with constant heat load and 8 mm and 16 mm inner diameters. While the heat loads applied to the pipes are 250 W and 350 W, the range of fluid flow rate values in the pipes is 0.9 l/min–1.8 l/min. GO–DW nanofluids with 0.01% and 0.02% volumetric concentrations and DW have been used as working fluids in the pipes. The outcomes acquired from this work have been matched with the studies using different nanofluids in the literature and it has been noticed that the outcomes are reasonable and consistent. The results of the study have been presented at different GO–DW nanofluid concentrations in pipes with 8 mm and 16 mm inner diameters as thermal, friction and total entropy production, output exergy ratio and 2nd law efficiency. The obtained outcomes have exhibited that the lowest total entropy generation has been obtained for the 8 mm diameter pipe and the nanofluid with 0.02% GO–DW concentration. Besides, 2nd law efficiency is 12% higher for the 8 mm diameter pipe than 16 mm at flow rate of 1.2 l/min and 0.02% GO–DW nanofluid, and 350 W heat load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

REFERENCES

  1. Wen, D., Lin, G., Vafaei, S., and Zhang, K., Review of Nanofluids for Heat Transfer Applications, Particuology, 2009, vol. 7, pp. 141–150.

    Article  Google Scholar 

  2. Saidur, R., Leong, K.Y., and Mohammad, H.A., A Review on Applications and Challenges of Nanofluids, Renew. Sust. Energy Rev., 2011, vol. 15, pp. 1646–1668.

    Article  Google Scholar 

  3. Godson, L., Raja, B., Lal, D.M., and Wongwises, S., Enhancement of Heat Transfer Using Nanofluids-An Overview, Renew. Sust. Energy Rev., 2010, vol. 14, pp. 629–641.

    Article  Google Scholar 

  4. Novoselov, K., Geim, A.K., Morozov, S., Jiang, D., Grigorieva, M.K.I., Dubonos, S., and Firsov, A., Two-Dimensional Gas of Massless Dirac Fermions in Graphene, Nature, 2005, vol. 438, pp. 197–200.

    Article  ADS  Google Scholar 

  5. Yu, W., Xie, H., Chen, L., and Li, Y., Enhancement of Thermal Conductivity of Kerosene-Based Fe3O4 Nanofluids Prepared via Phase-Transfer Method, Coll. Surf. A, 2010, vol. 355, pp. 109–113.

    Article  Google Scholar 

  6. Bejan, A., Entropy Generation Minimization, the Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes, J. Appl. Phys., 1996, vol. 79, p. 1191.

    Article  ADS  MATH  Google Scholar 

  7. Singh, P.K., Kanjirakat, A., Sundararajan, T., and Das, S.K., Entropy Generation due to Flow and Heat Transfer in Nanofluids, Int. J. Heat. Mass. Transfer, 2010, vol. 53, pp. 4757–4767.

    Article  MATH  Google Scholar 

  8. Bejan, A., A Study of Entropy Generation in Fundamental Convective Heat Transfer, J. Heat Transfer, 1979, vol. 101, pp. 718–725.

    Article  Google Scholar 

  9. Ji, Y., Zhang, H.C., Tong, J.F., Wang, X.W., Wang, H., and Zhang, Y.N., Entropy Assessment on Direct Contact Condensation of Subsonic Steam Jets in a Water Tank Through Numerical Investigation, Entropy, 2016, vol. 18, no. 1, p. 21.

    Article  ADS  Google Scholar 

  10. Herwig, H. and Wenterodt, T., Second Law Analysis of Momentum and Heat Transfer in Unit Operations, Int. J. Heat Mass Transfer, 2011, vol. 54, pp. 1323–1330.

    Article  MATH  Google Scholar 

  11. Schmandt, B. and Herwig, H., Loss Coefficients in Laminar Flows: Essential for the Design of Micro Flow Systems, PAMM, 2011, vol. 11, pp. 27–30.

    Article  Google Scholar 

  12. Khalkhali, H., Faghri, A., and Zuo, Z.J., Entropy Generation in a Heat Pipe System, Appl. Therm. Eng., 1999, vol. 19, pp. 1027–1043.

    Article  Google Scholar 

  13. Myat, A., Thu, K., Kim, Y.D., Chakraborty, A., Chun, W.G., and Ng, K.C., A Second Law Analysis and Entropy Generation Minimization of an Absorption Chiller, Appl. Therm. Eng., 2011, vol. 31, pp. 2405–2413.

    Article  Google Scholar 

  14. Goudarzi, N. and Talebi, S., Improving Performance of Two-Phase Natural Circulation Loops by Reducing of Entropy Generation, Energy, 2015, vol. 93, pp. 882–899.

    Article  Google Scholar 

  15. Mahmud, S. and Fraser, R.A., Thermodynamic Analysis of Flow and Heat Transfer inside Channel with Two Parallel Plates, Exergy An. Int. J., 2002, vol. 2, pp. 140–146.

    Article  Google Scholar 

  16. Mahmud, S. and Fraser, R.A., The Second Law Analysis in Fundamental Convective Heat Transfer Problems, Int. J. Thermal Sci., 2003, vol. 42, pp. 177–186.

    Article  Google Scholar 

  17. Leong, K.Y., Saidur, R., Mahlia, T.M.I., and Yau, Y.H., Entropy Generation Analysis of Nanofluid Flow in a Circular Tube Subjected to Constant Wall Temperature, Int. Commun. Heat Mass Transfer, 2012, vol. 39, pp. 1169–1175.

    Article  Google Scholar 

  18. Moghaddami, M., Shahidi, S., and Siavashi, M., Entropy Generation Analysis of Nanofluid Flow in Turbulent and Laminar Regimes, J. Comput. Theor. Nanosci., 2012, vol. 9, pp. 1586–1595.

    Article  Google Scholar 

  19. Karami, M., Shirani, E., and Avara, A., Analysis of Entropy Generation, Pumping Power and Tube Wall Temperature in Aqueous Suspensions of Alumina Particles, Heat Transfer Res., 2012, vol. 43, pp. 327–342.

    Article  Google Scholar 

  20. Hussien, A.A., Abdullah, M.Z., Yusop, N. Md., Al-Kouz, W., Mahmoudi, E., and Mehrali, M., Heat Transfer and Entropy Generation Abilities of MWCNTs/GNPs Hybrid Nanofluids in Microtubes, Entropy, 2019, vol. 21, p. 480.

    Article  ADS  Google Scholar 

  21. Mehrali, M., Sadeghinezhad, E., Rosen, M.A., Akhiani, A.R., Latibari, S.T., Mehrali, M., and Cornelis Metselaar, H.S., Heat Transfer and Entropy Generation for Laminar Forced Convection Flow of Graphene Nanoplatelets Nanofluids in a Horizontal Tube, Int. Comm. Heat Mass Transfer, 2015, vol. 66, pp. 23–31.

    Article  Google Scholar 

  22. Ji, Y., Zhang, H.C., Yang, X., and Shi, L., Entropy Generation Analysis and Performance Evaluation of Turbulent Forced Convective Heat Transfer to Nanofluids, Entropy, 2017, vol. 19, p. 108.

    Article  ADS  Google Scholar 

  23. Korei, Z. and Benissaad, S., Turbulent Forced Convection and Entropy Analysis of a Nanofluid Through a 3D 90° Elbow Using a Two-Phase Approach, Heat Transfer, 2021, vol. 50, pp. 1–31.

    Article  Google Scholar 

  24. Taskesen, E., Tekir, M., Gedik, E., and Arslan, K., Numerical Investigation of Laminar Forced Convection and Entropy Generation of Fe3O4/Water Nanofluids in Different Cross-Sectioned Channel Geometries, J. Therm. Eng., 2021, vol. 7, pp. 1752–1767.

    Article  Google Scholar 

  25. Keklikcioğlu, O., Entropy Generation Analysis of a Heat Exchanger Tube With Graphene-Iron Oxide Hybrid Nanofluid, Eur. J. Sci. Tech., 2021, vol. 24, pp. 398–404.

    Google Scholar 

  26. Szargut, J., Morris, D.R., and Steward, F.R., Exergy Analysis of Thermal, Chemical and Metallurgical Processes, Hemisphere Pubs., New York, USA; 1988.

  27. Khaleduzzaman, S.S., Sohel, M.R., Mahbubul, I.M., Saidur, R., and Selvaraj, J., Exergy and Entropy Generation Analysis of TiO2–Water Nanofluid Flow Through the Water Block as an Electronic Device, Int. J. Heat Mass Transfer, 2016, vol. 101, pp. 104–111.

    Article  Google Scholar 

  28. Khaleduzzaman, S.S., Sohel, M.R., Saidur, R., Mahbubul, I.M., Shahrul, I.M., Akash, B.A., and Selvaraj, J., Energy and Exergy Analysis of Alumina–Water Nanofluid for an Electronic Liquid Cooling System, Int. Commun. Heat Mass Transfer, 2014, vol. 57, pp. 118–127.

    Article  Google Scholar 

  29. Pandey, S.D., Nema, V.K. Experimental Analysis of Heat Transfer and Friction Factor of Nanofluid as a Coolant in a Corrugated Plate Heat Exchanger, Exp. Therm. Fluid Sci., 2012, vol. 38, pp. 248–256.

    Article  Google Scholar 

  30. Ahammed, N., Asirvatham, L.G., and Wongwises, S., Entropy Generation Analysis of Graphene–Alumina Hybrid Nanofluid in Multiport Minichannel Heat Exchanger Coupled with Thermoelectric Cooler, Int. J. Heat Mass Transfer, 2016, vol. 103, pp. 1084–1097.

    Article  Google Scholar 

  31. Karabulut, K., Buyruk, E., and Kılınç, F., Experimental and Numerical Investigation of Convection Heat Transfer in a Circular Copper Tube Using Graphene Oxide Nanofluid, J. Braz. Soc. Mech. Sci. Eng., 2020, vol. 42, p. 230.

    Article  Google Scholar 

  32. Hajjar, Z., Rashidi, A., and Ghozatloo, A., Enhanced Thermal Conductivities of Graphene Oxide Nanofluids, Int. Comm. Int. Heat. Mass Trans., 2014, vol. 57, pp. 128–131.

    Article  Google Scholar 

  33. Hummers, W.S. and Offeman, R.E., Preparation of Graphitic Oxide, J. Am. Chem. Soc., 1958, vol. 80, p. 1339.

    Article  Google Scholar 

  34. Pak, B.C. and Cho, Y.I., Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles, Exp. Heat Transfer, 1998, vol. 11, no. 2, p. 151–170.

    Article  ADS  Google Scholar 

  35. Singh, P.K., Anoop, K.B., Sundararajan, T., and Das, S.K., Entropy Generation due to Flow and Heat Transfer in Nanofluids, Int. J. Heat Mass Transfer, 2010, vol. 53, pp. 4757–4767.

  36. Narendran, G., Bhat Mithilesh, M., Akshay, L., and Arumuga Perumal, D., Experimental Analysis on Exergy Studies of Flow Through a Minichannel Using TiO2/Water Nanofluids, Therm. Sci. Eng. Prog., 2018, vol. 8, pp. 93–104.

    Article  Google Scholar 

  37. Taylor, J.R., An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, Sausalito, California: University Science Books, 1997.

    Google Scholar 

  38. Coleman, H.W. and Steele, W.G., Experimentation, Validation and Uncertainty Analysis for Engineers, John Wiley and Sons, Network; 2009.

    Book  Google Scholar 

  39. Li, J. and Kleinstreuer, C., Entropy Generation Analysis for Nanofluid Flow in Microchannels, J. Heat Transfer, 2010, vol. 132, p. 12–122401.

  40. Mehrali, M., Sadeghinezhad, E., Rosen, M.A., Akhiani, A.R., Latibari, S.T., Mehrali, M., and Metselaar, H.S.C., Experimental Investigation of Thermophysical Properties, Entropy Generation and Convective Heat Transfer for a Nitrogen-Doped Graphene Nanofluid in a Laminar Flow Regime, Adv. Powder Technol., 2016, vol. 27, pp. 717–727.

    Article  Google Scholar 

  41. Khairul, M.A., Alim, M.A., Mahbubul, I.M., Saidur, R., Hepbasli, A., and Hossain, A., Heat Transfer Performance and Exergy Analyses of a Corrugated Plate Heat Exchanger Using Metal Oxide Nanofluids, Int. Comm. Heat Mass Transfer, 2014, vol. 50, pp. 8–14.

    Article  Google Scholar 

  42. Karabulut, K., Buyruk, E., and Kılınç, F., Experimental Investigation of the Effect of Graphene Oxide (GO)-Distilled Water Nanofluid Usage on Heat Transfer Increment in Circular Tubes Having Different Diameters, Int. J. Eng. Res. Dev., 2019, vol. 11, pp. 282–301.

    Google Scholar 

  43. Hedayati, F. and Domairry, G., Nanoparticle Migration Effects on Fully Developed Forced Convection of TiO2–Water Nanofluid in a Parallel Plate Microchannel, Particuology, 2016, vol. 24, pp. 96–107.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Karabulut.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ocak, N., Karabulut, K. Entropy and Exergy Analysis in an Experimental Thermal System Used GO–DW Nanofluid Having Straight Copper Pipes with Different Diameters. J. Engin. Thermophys. 32, 637–655 (2023). https://doi.org/10.1134/S1810232823030177

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232823030177

Navigation