Skip to main content
Log in

Experimental and Numerical Investigation of Al2O3 Nanofluids Based Crude Oil in Shell and Tube Heat Exchanger

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

Numerical investigation of heat transfer augmentation with Al2O3 nanofluids-based crude oil in a shell and tube heat exchanger. This paper presents numerical and experimental investigations to study the effect of using Al2O3 nanofluids based crude oil on heat transfer enhancement in a turbulent regime with mass flow rate of (4 to 18 kg/s) in the shell and tube heat exchanger. The investigation concentrates on the effects of the Al2O3 based crude oil nanofluids on friction factor, flow characteristics and heat transfer, through shell and tube heat exchanger. The results show that the thermal conductivity as well as the viscosity of Al2O3 nanofluid based crude oil increased with increasing nanoparticles volume fraction and decreased with increasing the temperature. The outcomes revealed that the Nusselt number improved with increasing mass flow rate and also the friction factor increases dramatically using nanofluid this because of increment in nanofluid viscosity comparing to the base fluid (crude oil), additionally the results illustrate a constant pattern along the heat exchanger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. Towler, G. and Sinnott, R., Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design, Butterworth-Heinemann, 2021.

  2. Chang, C., et al., Globally Optimal Design of Intensified Shell and Tube Heat Exchangers Using Complete Set Trimming, Comput. Chem. Engin., 2022, vol. 158, p. 107644.

    Article  Google Scholar 

  3. Kim, K., et al., Single-Phase Heat Transfer Characteristics of Water in an Industrial Plate and Shell Heat Exchanger under High-Temperature Conditions, Energies, 2021, vol. 14, no. 20, p. 6688.

    Article  Google Scholar 

  4. Wang, B., et al., Heat Exchanger Network Retrofit with Heat Exchanger and Material Type Selection: A Review and a Novel Method, Ren. Sust. Energy Rev., 2021, vol. 138, p. 110479.

    Article  Google Scholar 

  5. Fares, M., et al., Heat Transfer Analysis of a Shell and Tube Heat Exchanger Operated with Graphene Nanofluids, Case Stud. Thermal Engin., 2020, vol. 18, p. 100584.

    Article  Google Scholar 

  6. Masuda, H., et al., Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra Fine Particles, Netsu Bussei, 1993, vol. 4, no. 4, pp. 227–233.

    Article  Google Scholar 

  7. Ajeeb, W. and Murshed, S.S., Nanofluids in Compact Heat Exchangers for Thermal Applications: A State-of-the-Art Review, Thermal Sci. Engin. Progr., 2022, p. 101276.

    Article  Google Scholar 

  8. Chakraborty, S. and Panigrahi, P.K., Stability of Nanofluid: A Review, Appl. Thermal Engin., 2020, vol. 174, p. 115259.

    Article  Google Scholar 

  9. Ganvir, R., et al., Heat Transfer Characteristics in Nanofluid—A Review, Renew. Sust. Energy Rev., 2017, vol. 75, pp. 451–460.

    Article  Google Scholar 

  10. Maxwell, J.C., A Treatise on Electricity and Magnetism, Clarendon, 1881.

  11. DeVera, Jr., A.L. and Strieder, W., Upper and Lower Bounds on the Thermal Conductivity of a Random, Two-Phase Material, J. Phys. Chem., 1977, vol. 81, no. 18, pp. 1783–1790.

    Article  Google Scholar 

  12. Maı̈ga, S.E.B., et al., Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube, Superlatt. Microstruct., 2004, vol. 35, no. 3, pp. 543–557.

    Article  ADS  Google Scholar 

  13. Buongiorno, J., Convective Transport in Nanofluids, J. Heat Transfer, 2006, vol. 128, no. 3, pp. 240–250.

    Article  Google Scholar 

  14. Mintsa, H.A., et al., New Temperature Dependent Thermal Conductivity Data for Water-Based Nanofluids, Int. J. Thermal Sci., 2009, vol. 48, no. 2, pp. 363–371.

    Article  Google Scholar 

  15. Einstein, A., Eine neue Bestimmung der Moleküldimensionen, Annalen Phys., 1906, vol. 324, no. 2, pp. 289–306.

  16. Sharma, K., et al., Correlations to Predict Friction and Forced Convection Heat Transfer Coefficients of Water Based Nanofluids for Turbulent Flow in a Tube, Int. J. Microscale Nanoscale Thermal Fluid Transport Phenom., 2012, vol. 3, no. 4, pp. 1–25.

    MathSciNet  Google Scholar 

  17. Nguyen, C., et al., Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids–Hysteresis Phenomenon, Int. J. Heat Fluid Flow, 2007, vol. 28, no. 6, pp. 1492–1506.

    Article  Google Scholar 

  18. Vajjha, R.S., et al., Development of New Correlations for Convective Heat Transfer and Friction Factor in Turbulent Regime for Nanofluids, Int. J. Heat Mass Transfer, 2010, vol. 53, no. 21, pp. 4607–4618.

    Article  Google Scholar 

  19. Pak, B.C. and Cho, Y.I., Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles, Exp. Heat Transfer, Int. J., 1988, vol. 11, no. 2, pp. 151–170.

    Article  ADS  Google Scholar 

  20. Fotukian, S. and Esfahany, M.N., Experimental Study of Turbulent Convective Heat Transfer and Pressure Drop of Dilute CuO/Water Nanofluid inside a Circular Tube, Int. Comm. Heat Mass Transfer, 2010, vol. 37, no. 2, pp. 214–219.

    Article  Google Scholar 

  21. Syam Sundar, L., et al., Experimental Investigation of Forced Convection Heat Transfer and Friction Factor in a Tube with Fe3O4 Magnetic Nanofluid, Exp. Thermal Fluid Sci., 2012, vol. 37, pp. 65–71.

    Article  Google Scholar 

  22. Hong, J., et al., Effect of Laser Irradiation on Thermal Conductivity of ZnO Nanofluids, J. Phys.: Conf. Ser., 2007, vol. 59, p. 301.

  23. Kothandaraman, C., Heat and Mass Transfer Data Book, New Age Int., 2004.

  24. Sundén, B., Computational Fluid Dynamics in Research and Design of Heat Exchangers, Heat Transfer Engin., 2007, vol. 28, no. 11, pp. 898–910.

    Article  ADS  Google Scholar 

  25. Ozden, E. and Tari, I., Shell Side CFD Analysis of a Small Shell-and-Tube Heat Exchanger, Energy Convers. Manag., 2010, vol. 51, no. 5, pp. 1004–1014.

    Article  Google Scholar 

  26. Alfarawi, S., Evaluation of Hydro-Thermal Shell-Side Performance in a Shell-and-Tube Heat Exchanger: CFD Approach, J. Adv. Res. Fluid Mech. Thermal Sci., 2020, vol. 66, no. 1, pp. 104–119.

    Google Scholar 

  27. Anderson, J.D. and Wendt, J., Computational Fluid Dynamics, Springer, 1995.

    Google Scholar 

  28. Gnielinski, V., New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow, Int. Chem. Eng., 1976, vol. 16, no. 2, pp. 359–368.

    Google Scholar 

  29. Notter, R. and Sleicher, C., A Solution to the Turbulent Graetz Problem—III, Fully Developed and Entry Region Heat Transfer Rates, Chem. Engin. Sci., 1972, vol. 27, no. 11, pp. 2073–2093.

    Article  ADS  Google Scholar 

  30. Dittus, F. and Boelter, L., Publications on Engineering, University of California, Berkeley, 1930, vol. 2, no. 13, pp. 443–461.

  31. Blasius, H., Das Aehnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten, in Mitteilungen über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, Springer, 1913, pp. 1–41.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pirmohammadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Obaidi, A.M.M., Pirmohammadi, M. Experimental and Numerical Investigation of Al2O3 Nanofluids Based Crude Oil in Shell and Tube Heat Exchanger. J. Engin. Thermophys. 32, 521–531 (2023). https://doi.org/10.1134/S1810232823030098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232823030098

Navigation