Skip to main content
Log in

Experimental Investigation of Parabolic Trough Solar Collector Thermal Efficiency Enhanced by Different Reflective Materials

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

This experimental study presents the thermal efficiency enhancement of a parabolic trough solar collector (PTSC) system using different refractive surfaces and various mass flow rates. Two PTSC models were used to compare the aluminium sheet (AS) and silver chrome film (SCF) under the weather conditions of Hungary. Initially, similarity tests of the two collectors were carried out using the aluminium reflective surfaces with a mass flow rate of 90 L/h. According to the test results, the average thermal efficiency between collectors did not exceed 0.3%. Afterwards, the PTSC was compared with an evacuated U-shaped glass tube at different mass flow rates, namely 30, 60, 90, and 120 L/h. According to the experimental results, the maximum heat removal factor of PTSC for both SCF and AS at 120 L/h was 58.59% and 46.02%, respectively. Moreover, the maximum thermal efficiency with AS obtained for 120, 90, 60, and 30 L/h mass flow rates reached 27%, 22.84%, 18.9%, and 14.86%, respectively. Likewise, the maximum thermal efficiency with SCF at these mass flow rates attained 46.84%, 39.73%, 37.47%, and 33.68%, respectively. Conclusively, the PTSC thermal performance using SCF is superior to that of AS regardless of mass flow rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

REFERENCES

  1. Asaad Yasseen, A.-R., Istvan, S., and Istvan, F., Selective Absorber Coatings and Technological Advancements in Performance Enhancement for Parabolic Trough Solar Collector, J. Thermal Sci., 2022, pp. 1–19.

  2. Al-Rabeeah, A.Y., Seres, I., and Farkas, I., Thermal Improvement in Parabolic Trough Solar Collector Using Receiver Tube Design and Nanofluid, in: Int. Workshop IFToMM for Sustainable Development Goals, Springer, 2021, pp. 30–40.

  3. Al-Rabeeah, A.Y., Seres, I., and Farkas, I., Experimental Investigation and Performance Evaluation of Parabolic Trough Solar Collector for Hot Water Generation, J. Eng. Therm., 2021, vol. 30, pp. 420–432.

    Article  Google Scholar 

  4. Sedaghat, F., Yousefi, F., and Zolfaghari, H., Experimental Investigation and Modeling of S, N-GQDs Nanofluid Density Using New Equation of State and Artificial Neural Network, J. Eng. Therm., 2019, vol. 28, pp. 276–290.

    Article  Google Scholar 

  5. Al-Oran, O., Lezsovits, F., and Aljawabrah, A., Exergy and Energy Amelioration for Parabolic Trough Collector Using Mono and Hybrid Nanofluids, J. Therm. An. Calorim., 2020, pp. 1–18.

  6. Mills, D., Advances in Solar Thermal Electricity Technology, Solar Energy, 2004, vol. 76, pp. 19–31.

    Article  ADS  Google Scholar 

  7. Noman, M., Wasim, A., Ali, M., et al., An Investigation of a Solar Cooker with Parabolic Trough Concentrator, Case Stud. Thermal Engin., 2019, vol. 14, p. 100436.

    Article  Google Scholar 

  8. Selvaraj Chandrika, V., El, M., Attia, H., et al., Performance Enhancements of Conventional Solar Still Using Reflective Aluminium Foil Sheet and Reflective Glass Mirrors: Energy and Exergy Analysis, n.d.

  9. Garcı́a-Segura, A., Fernández-Garcı́a, A., Ariza, M.J., et al., Durability Studies of Solar Reflectors: A Review, Renew. Sust. Energy Rev., 2016, vol. 62, pp. 453–467.

    Article  Google Scholar 

  10. Kennedy, C.E., and Terwilliger, K., Optical Durability of Candidate Solar Reflectors, J. Sol. Energy Eng., 2005, vol. 127, pp. 262–269.

    Article  Google Scholar 

  11. Rodrıguez, S.M., Gálvez, J.B., Rubio, M.I.M., et al., Engineering of Solar Photocatalytic Collectors, Solar Energy, 2004, vol. 77, pp. 513–524.

    Article  ADS  Google Scholar 

  12. Czanderna, A.W. and Schissel, P., Specularity and Stability of Silvered Polymers, Solar Energy Mat., 1986, vol. 14, pp. 341–356.

    Article  Google Scholar 

  13. Macedo-Valencia, J., Ramı́rez-Ávila, J., Acosta, R., et al., Design, Construction and Evaluation of Parabolic Trough Collector as Demonstrative Prototype, Energy Procedia, 2014, vol. 57, pp. 989–998.

    Article  Google Scholar 

  14. Muthu, G., Shanmugam, S., and Veerappan, A.R., Solar Parabolic Dish Thermoelectric Generator with Acrylic Cover, Energy Procedia, 2014, vol. 54, pp. 2–10.

    Article  Google Scholar 

  15. Iqbal, W., Ahmad, W., and Fatima, N., Experimental and Theoretical Performance Investigation of Parabolic Trough Collector for Industrial Sector in the Region of Taxila, Techn. J., 2020, vol. 25, pp. 76–84.

    Google Scholar 

  16. Morales, A. and Ajona, J.I., Durability, Performance and Scalability of Sol-Gel Front Surface Mirrors and Selective Absorbers, Le J. de Physique IV, 1999, vol. 9, p. Pr3-513.

    Google Scholar 

  17. Almanza, R., Hernández, P., Martı́nez, I., et al., Development and Mean Life of Aluminum First-Surface Mirrors for Solar Energy Applications, Solar Energy Mat. Solar Cells, 2009, vol. 93, pp. 1647–1651.

    Article  Google Scholar 

  18. Fend, T., Hoffschmidt, B., Jorgensen, G., et al., Comparative Assessment of Solar Concentrator Materials, Solar Energy, 2003, vol. 74, pp. 149–155.

    Article  ADS  Google Scholar 

  19. Chae, D.J., Kim, D.Y., Kim, D.H., et al., Optical Properties of a NiO/Al-Based Reflector for High-Power Ultraviolet Light-Emitting Diodes, J. Korean Phys. Soc., 2011, vol. 58, pp. 990–993.

    Article  Google Scholar 

  20. Zou, B., Dong, J., Yao, Y., et al., A Detailed Study on the Optical Performance of Parabolic Trough Solar Collectors with Monte Carlo Ray Tracing Method Based on Theoretical Analysis, Solar Energy, 2017, vol. 147, pp. 189–201.

    Article  ADS  Google Scholar 

  21. Arasu, A.V. and Sornakumar, S.T., Performance Characteristics of the Solar Parabolic Trough Collector with Hot Water Generation System, Thermal Sci., 2006, vol. 10, pp. 167–174.

    Article  Google Scholar 

  22. März, T., Prahl, C., Ulmer, S., et al., Validation of Two Optical Measurement Methods for the Qualification of the Shape Accuracy of Mirror Panels for Concentrating Solar Systems, J. Solar Energy Engin., 2011, vol. 133, no. 3. p. 030201.

    Article  Google Scholar 

  23. Bellos, E., and Tzivanidis, C., Alternative Designs of Parabolic Trough Solar Collectors, Prog. Energy Combust. Sci.2019, vol. 71, pp. 81–117.

    Article  Google Scholar 

  24. Bellos, E., Tzivanidis, C., Antonopoulos, K.A., et al., Thermal Enhancement of Solar Parabolic Trough Collectors by Using Nanofluids and Converging-Diverging Absorber Tube, Renew. Energy, 2016, vol. 94, pp. 213–222.

    Article  Google Scholar 

  25. Bellos, E. and Tzivanidis, C., Enhancing the Performance of Evacuated and Non-Evacuated Parabolic Trough Collectors Using Twisted Tape Inserts, Perforated Plate Inserts and Internally Finned Absorber, Energies (Basel), 2018, vol. 11, p. 1129.

    Article  Google Scholar 

  26. Duffie, J.A. and Beckman, W.A., Solar Engineering of Thermal processes, 2nd ed., New York: Wiley, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Y. Al-Rabeeah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Rabeeah, A.Y., Seres, I. & Farkas, I. Experimental Investigation of Parabolic Trough Solar Collector Thermal Efficiency Enhanced by Different Reflective Materials. J. Engin. Thermophys. 32, 579–590 (2023). https://doi.org/10.1134/S1810232823030128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232823030128

Navigation