Skip to main content
Log in

Energy Recovery Based on Exhaust Gas Recirculation and Heat Regeneration Processes Applied in a Firewood Boiler

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

This research investigated the exhaust gas recirculation (EGR) process to recover part of the thermal and chemical energy left in the exhaust boiler stream. A theoretical energy conversion and use analysis was performed based on a small boiler. Several measurements and analyses of the operation reports provided the boundary conditions and relevant information for modelling the processes. The methodology considered the radiation from exhaust gases, thermodynamics balances, and financial engineering calculations for the energy recovery analysis. Financial results indicate that the exhaust gas recirculation process implementation, regarding 20% of the EGR ratio, presented 69% and 1.45 years of internal returning rate and payback, respectively. However, the regenerative process presented an internal returning rate and payback values of 112% and 0.9 years. Indeed, both processes might be applied in order to increase efficiency and reduce emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. Hamid Elsheikh, M., Shnawah, D.A., Sabri, M.F.M., Said, S.B.M., Haji Hassan, M., Ali Bashir, M.B., et al., A Review on Thermoelectric Renewable Energy: Principle Parameters That Affect Their Performance. Renew. Sust. Energy Rev., 2014, vol. 30, pp. 337–355; https://doi.org/10.1016/j.rser.2013.10.027.

    Article  Google Scholar 

  2. Patronelli, S., Antonelli, M., Tognotti, L., and Galletti, C., Combustion of Wood-Chips in a Small-Scale Fixed-Bed Boiler: Validation of the Numerical Model through In-Flame Measurements, Fuel, 2018, vol. 221, pp. 128–117.

    Article  Google Scholar 

  3. Arahuetes, A. and Olcina Cantos, J., The Potential of Sustainable Urban Drainage Systems (SuDS) as an Adaptive Strategy to Climate Change in the Spanish Mediterranean, Int. J. Envir. Stud., 2019, vol. 76, pp. 764–779; https://doi.org/10.1080/00207233.2019.1634927.

    Article  Google Scholar 

  4. Whiteman, A., Wickramasinghe, A., and Piña, L., Global Trends in Forest Ownership, Public Income and Expenditure on Forestry and Forestry Employment, For. Ecol. Manag., vol. 2015, no. 352, pp. 99–108; https://doi.org/10.1016/j.foreco.2015.04.011.

    Article  Google Scholar 

  5. Goh, C.S., Junginger, M., Cocchi, M., Marchal, D., Thrän, D., Hennig, C., et al., Wood Pellet Market and Trade: A Global Perspective, Biofuels, Bioprod. Bioref., 2013, vol. 7, pp. 24–42; https://doi.org/ 10.1002/bbb.1366.

    Article  Google Scholar 

  6. García Torrent, J., Ramírez-Gómez, Á, Fernandez-Anez, N., Medic Pejic, L., and Tascón, A., Influence of the Composition of Solid Biomass in the Flammability and Susceptibility to Spontaneous Combustion, Fuel, 2016, vol. 184, pp. 503–511; https://doi.org/10.1016/j.fuel.2016.07.045.

    Article  Google Scholar 

  7. Da Silva, B.P., Saccol, F., Caetano, N.R., Pedrazzi, C., and Caetano, N.R., Technical and Economic Viability for the Briquettes Manufacture, Def. Diffus. Forum, , vol. 2017, no. 380, pp. 218–226; https://doi.org/ 10.4028/www.scientific.net/DDF.380.218.

    Article  Google Scholar 

  8. Alanne, K., Laukkanen, T., Saari, K., and Jokisalo, J., Analysis of a Wooden Pellet Fueled Domestic Thermoelectric Cogeneration System, Appl. Therm. Eng., 2014, vol. 63, pp. 1–10.

    Article  Google Scholar 

  9. Saidur, R., Abdelaziz, E.A., Demirbas, A., Hossain, M.S., and Mekhilef, S., A Review on Biomass as a Fuel for Boilers, Renew. Sust. Energy Rev., 2011, vol. 15, pp. 2262–2289; https://doi.org/10.1016/ j.rser.2011.02.015.

    Article  Google Scholar 

  10. Baral, A. and Guha, G., Trees for Carbon Sequestration or Fossil Fuel Substitution: The Issue of Cost vs. Carbon Benefit, Biomass Bioenergy, 2004, vol. 10, pp. 23–37.

    Google Scholar 

  11. Yin, C, Rosendahl, L.A., and Kær, S.K., Grate-Firing of Biomass for Heat and Power Production, Prog. Energy Combust. Sci., 2008, vol. 34, pp. 725–754; https://doi.org/10.1016/j.pecs.2008.05.002.

    Article  Google Scholar 

  12. Proto, A.R., Bacenetti, J., Macrí, G., and Zimbalatti, G., Roundwood and Bioenergy Production from Forestry: Environmental Impact Assessment Considering Different Logging Systems, J. Clean. Prod., 2017, vol. 165, pp. 1485–1498; https://doi.org/10.1016/j.jclepro.2017.07.227.

    Article  Google Scholar 

  13. Zhang, X., Yu, T., Yang, B., Zheng, L., and Huang, L. Approximate Ideal Multi-Objective Solution \(Q(\lambda )\) Learning for Optimal Carbon, Energy Convers. Manag., 2015, vol. 106, pp. 543–556.

    Article  Google Scholar 

  14. Klunk, M.A., Dasgupta, S., and Das, M., Slow Pyrolysis of Rice Straw: Analysis of Biochar, Bio-Oil and Gas, South Brazilian J. Chem., 2018, vol. 26, pp. 17–25.

    Article  Google Scholar 

  15. Klunk, M.A., Dasgupta, S., and Das, M. Influence of Fast Pyrolysis with Temperature on Gas, Char and Bio-Oil Production, South Brazilian J. Chem., 2017, vol. 25, pp. 1–11.

    Google Scholar 

  16. Fearnside, P.M. and Pueyo, S., Greenhouse-Gas Emissions from Tropical Dams, Nat. Clim. Chang. 2012, vol. 2, pp. 382–384; https://doi.org/10.1038/nclimate1540.

    Article  ADS  Google Scholar 

  17. De Oliveira Fraga, A., Klunk, M.A., De Oliveira, A.A., Furtado, G.G., Knörnschild, G., and Dick, L.F.P., Soil Corrosion of the AISI1020 Steel Buried Near Electrical Power Transmission Line Towers, Mat. Res., 2014, vol. 17, pp. 1637–1643; https://doi.org/10.1590/1516-1439.305714.

    Article  Google Scholar 

  18. Dos Santos, M.A., Damázio, J.M., Rogério, J.P., Amorim, M.A., Medeiros, A.M., Abreu, J.L.S., Maceira, M.E.P., Melo, A.C., and Rosa, L.P., Estimates of GHG Emissions by Hydroelectric Reservoirs: The Brazilian case, Energy, 2017, vol. 133, pp. 99–107.

    Article  Google Scholar 

  19. Klunk, M.A., De Oliveira, A.A., Furtado, G.G., Knörnschild, G., and Dick, L.F., Study of the Corrosion of Buried Steel Grids of Electrical Power Transmission Towers ECS Trans, 2019, vol. 43, pp. 23–27; https://doi.org/10.1149/1.4704934.

    Article  Google Scholar 

  20. Zahedi, A. Maximizing Solar PV Energy Penetration Using Energy Storage Technology, Renew. Sust. Energy Rev., 2011, vol. 15, pp. 866–870; https://doi.org/10.1016/j.rser.2010.09.011.

    Article  Google Scholar 

  21. Sivaraman, M.R., The Role of Climate Change in Global Economic Development, Int. J. Envir. Stud., 2014, vol. 71, pp. 221–225; https://doi.org/10.1080/00207233.2013.870687.

    Article  Google Scholar 

  22. Schuck, S., Biomass as an Energy Source, Int. J. Envir. Stud., 2006, vol. 63, pp. 823–835; https://doi.org/ 10.1080/00207230601047222.

    Article  Google Scholar 

  23. Diamond-Smith, N., Smith, K.R., and Hodoglugil, N.N.S., Climate Change and Population in the Muslim World, Int. J. Envir. Stud., 2011, vol. 68, pp. 1–8; https://doi.org/10.1080/00207233.2010.537053.

    Article  Google Scholar 

  24. Ren, G., Liu, J., Wan, J., Guo, Y., and Yu, D., Overview of Wind Power Intermittency: Impacts, Measurements, and Mitigation Solutions, Appl. Energy, 2017, vol. 204, pp. 47–65.

    Article  Google Scholar 

  25. Pierobon, F., Zanetti, M., Grigolato, S., Sgarbossa, A., Anfodillo, T., and Cavalli, R., Life Cycle Environmental Impact of Firewood Production—A Case Study in Italy, Appl. Energy, 2015, vol. 150, pp. 185–195.

    Article  Google Scholar 

  26. Spinelli, R., Ward, S.M., and Owende, P.M., A Harvest and Transport Cost Model for Eucalyptus spp. Fast-Growing Short Rotation Plantations, Biomass Bioenergy, 2009, vol. 33, pp. 1265–1270.

    Article  Google Scholar 

  27. Brazil. CAGED, Cadastro Geral do Empregados and Desempregados, GovBr, 2012.

  28. Tang, E., Peng, C., and Xu, Y., Changes of Energy Consumption with Economic Development when an Economy Becomes More Productive, J. Clean. Prod., 2018, vol. 196, pp. 788–795; https://doi.org/10.1016/ j.jclepro.2018.06.101.

    Article  Google Scholar 

  29. Guerra, S.P.S., Garcia, E.A., Lanças, K.P., Rezende, M.A., and Spinelli, R., Heating Value of Eucalypt Wood Grown on SRC for Energy Production, Fuel, 2014, vol. 137, pp. 360–363; https://doi.org/10.1016/ j.fuel.2014.07.103.

    Article  Google Scholar 

  30. Thapa, S., Borquist, E., and Weiss, L., Thermal Energy Recovery via Integrated Small Scale Boiler and Superheater, Energy, 2018, vol. 142, pp. 765–772; https://doi.org/10.1016/j.energy.2017.10.063.

    Article  Google Scholar 

  31. Sagani, A., Hagidimitriou, M., and Dedoussis, V., Perennial Tree Pruning Biomass Waste Exploitation for Electricity Generation: The Perspective of Greece, Sust. Energy Technol. Assess., 2019, vol. 31, pp. 77–85; https://doi.org/10.1016/j.seta.2018.11.001.

    Article  Google Scholar 

  32. Díez, H.E., Natalia, I., and Pérez, J.F., Mass, Energy, and Exergy Analysis of the Microgasification Process in a Top-Lit Updraft Reactor: Effects of Firewood Type and Forced Primary Air Flow, Sust. Energy Technol. Assess., 2018, vol. 29, pp. 82–91; https://doi.org/10.1016/j.seta.2018.07.003.

    Article  Google Scholar 

  33. Ahmadi, L., Kannangara, M., and Bensebaa, F., Cost-Effectiveness of Small Scale Biomass Supply Chain and Bioenergy Production Systems in Carbon Credit Markets: A Life Cycle Perspective, Sust. Energy Technol. Assess., 2020, vol. 37, p. 100627; https://doi.org/10.1016/j.seta.2019.100627.

    Article  Google Scholar 

  34. Adams, P.W.R. and Mcmanus, M.C., Small-Scale Biomass Gasification CHP Utilisation in Industry: Energy and Environmental Evaluation, Sust. Energy Technol. Assess., 2014, vol. 6, pp. 129–140; https://doi.org/ 10.1016/j.seta.2014.02.002.

    Article  Google Scholar 

  35. Okoko, A., Reinhard, J., Wymann, S., Dach, V., Zah, R., Kiteme, B., et al., The Carbon Footprints of Alternative Value Chains for Biomass Energy for Cooking in Kenya and Tanzania, Sust. Energy Technol. Assess., 2017, vol. 22, pp. 124–133; https://doi.org/10.1016/j.seta.2017.02.017.

    Article  Google Scholar 

  36. Agrawal, A.K., Singh, S.K., Sinha, S., and Shukla, M.K., Effect of EGR on the Exhaust Gas Temperature and Exhaust Opacity in Compression Ignition Engines, Sadhana–Acad. Proc. Eng. Sci., 2004, vol. 29, pp. 275–284; https://doi.org/10.1007/BF02703777.

    Article  Google Scholar 

  37. Ali, U., Best, T., Finney, K.N., Palma, C.F., Hughes, K.J., Ingham, D.B., et al., Process Simulation and Thermodynamic Analysis of a Micro Turbine with Post-Combustion CO2 Capture and Exhaust Gas Recirculation, Energy Procedia, 2014, vol. 63, pp. 986–996; https://doi.org/10.1016/j.egypro.2014.11.107.

    Article  Google Scholar 

  38. De Santis, A., Ingham, D.B., Ma, L., and Pourkashanian, M., CFD Analysis of Exhaust Gas Recirculation in a Micro Gas Turbine Combustor for CO2 Capture, Fuel, 2016, vol. 173, pp. 146–154; https://doi.org/10.1016/j.fuel.2016.01.063.

    Article  Google Scholar 

  39. Alcaráz-Calderon, A.M., González-Díaz, M.O., Mendez, Ä., González-Santaló, J.M., and González-Díaz, A., Natural Gas Combined Cycle with Exhaust Gas Recirculation and CO2 Capture at Part-Load Operation, J. Energy Inst., 2019, vol. 92, pp. 370–381; https://doi.org/10.1016/j.joei.2017.12.007.

    Article  Google Scholar 

  40. Li, H., Ditaranto, M., and Berstad, D., Technologies for Increasing CO2 Concentration in Exhaust Gas from Natural Gas-Fired Power Production with Post-Combustion, Amine-Based CO2Capture, Energy, 2011, vol. 36, pp. 1124–1133; https://doi.org/10.1016/j.energy.2010.11.037.

    Article  Google Scholar 

  41. Shepherd, P.J., Fundamentals of Thermodynamics, 2013; https://doi.org/10.1002/9781118516911.ch5.

  42. Singh, G., Singh, A.P., and Agarwal, A.K., Experimental Investigations of Combustion, Performance and Emission Characterization of Biodiesel Fuelled HCCI Engine Using External Mixture Formation Technique, Sust. Energy Technol. Assess., 2014, vol. 6, pp. 116–128; https://doi.org/10.1016/j.seta.2014.01.002.

    Article  Google Scholar 

  43. Jiménez-Espadafor, F.J., Torres, M., Velez, J.A., Carvajal, E., and Becerra, J.A., Experimental Analysis of Low Temperature Combustion Mode with Diesel and Biodiesel Fuels: A Method for Reducing NOx and Soot Emissions, Fuel Process Technol., 2012, vol. 103, pp. 57–63; https://doi.org/10.1016/j.fuproc.2011.11.014.

    Article  Google Scholar 

  44. Yu, B., Kum, S.M., Lee, C.E., and Lee, S., Study on the Combustion Characteristics of a Premixed Combustion System with Exhaust Gas Recirculation, Energy, 2013, vol. 61, pp. 345–353; https://doi.org/10.1016/ j.energy.2013.08.057.

    Article  Google Scholar 

  45. Ali, U., Font-Palma, C., Akram, M., Agbonghae, E.O., Ingham, D.B., and Pourkashanian, M., Comparative Potential of Natural Gas, Coal and Biomass Fired Power Plant with Post-Combustion CO2 Capture and Compression, Int. J. Greenh Gas Control, 2017, vol. 63, pp. 184–193; https://doi.org/10.1016/ j.ijggc.2017.05.022.

    Article  Google Scholar 

  46. Gómez, M.A., Martín, R., Chapela, S., and Porteiro, J., Steady CFD Combustion Modeling for Biomass Boilers, Energy Convers. Manag., 2019, vol. 179, pp. 91–103.

    Article  Google Scholar 

  47. Shinomori, K., Katou, K., Shimokuri, D., and Ishizuka, S., NOx Emission Characteristics and Aerodynamic Structure of a Self-Recirculation Type Burner for Small Boilers, Proc. Combust. Inst., 2011, vol. 33, pp. 2735–2742; https://doi.org/10.1016/j.proci.2010.06.093.

    Article  Google Scholar 

  48. Henriques, M. da C.B.F., Effect of Exhaust Gas Recirculation and Air Staging on Gaseous and Particle Emissions in a Domestic Boiler, 2018.

  49. Houshfar, E., Skreiberg, Ø., Todorović, D., Skreiberg, A., Løvås, T., Jovović, A., et al.. NOx Emission Reduction by Staged Combustion in Grate Combustion of Biomass Fuels and Fuel Mixtures, Fuel, 2012, vol. 98, pp. 29–40.

    Article  Google Scholar 

  50. Vaccarelli, M., Carapellucci, R., and Giordano, L., The Use of Biomass to Reduce Power Derating in Combined Cycle Power Plants Retrofitted with Post-Combustion CO2 Capture, 27th Int. Conf. Effic. Cost, Optim. Simul. Environ Impact Energy Syst. ECOS 2014, 2014.

  51. Li, H., Haugen, G., Ditaranto, M., Berstad, D., and Jordal, K., Impacts of Exhaust Gas Recirculation (EGR) on the Natural Gas Combined Cycle Integrated with Chemical Absorption CO2 Capture Technology, Energy Procedia, 2011, vol. 4, pp. 1411–1418; https://doi.org/10.1016/j.egypro.2011.02.006.

    Article  Google Scholar 

  52. Ditaranto, M., Hals, J., Bjørge, T., Investigation on the In-Flame NO Reburning in Turbine Exhaust Gas, Proc. Combust. Inst., 2009, vol. 32 II, pp. 2659–2666; https://doi.org/10.1016/j.proci.2008.07.002.

    Article  Google Scholar 

  53. ElKady, A.M., Evulet, A., Brand, A., Ursin, T.P., and Lynghjem, A., Application of Exhaust Gas Recirculation in a DLN F-Class Combustion System for Postcombustion Carbon Capture, J. Eng. Gas Turbines Power, 2009, p. 131; https://doi.org/10.1115/1.2982158.

  54. Hu, Y., Xu, G., Xu, C., and Yang, Y., Thermodynamic Analysis and Techno-Economic Evaluation of an Integrated Natural Gas Combined Cycle (NGCC) Power Plant with Post-Combustion CO2 Capture, Appl. Therm. Eng., 2017, vol. 111, pp. 308–316; https://doi.org/10.1016/j.applthermaleng.2016.09.094.

    Article  ADS  Google Scholar 

  55. Lindqvist, K., Jordal, K., Haugen, G., Hoff, K.A., and Anantharaman, R., Integration Aspects of Reactive Absorption for Post-Combustion CO2 Capture From NGCC, Energy, 2014, vol. 78, pp. 758–767.

    Article  Google Scholar 

  56. Ali, U., Agbonghae, E.O., Hughes, K.J., Ingham, D.B., Ma, L., and Pourkashanian, M., Techno-Economic Process Design of a Commercial-Scale Amine-Based CO2 Capture System for Natural Gas Combined Cycle Power Plant with Exhaust Gas Recirculation, Appl. Therm. Eng., 2016, vol. 103, pp. 747–758; https://doi.org/10.1016/j.applthermaleng.2016.04.145.

    Article  Google Scholar 

  57. Røkke, P.E., Environmental Use of Natural Gas in a Gas Turbine, Norwegian University of Science and Technology, 2006.

  58. Peeters, A.N.M., Faaij, A.P.C., and Turkenburg, W.C., Techno-Economic Analysis of Natural Gas Combined Cycles with Post-Combustion CO2 Absorption, Including a dEtailed Evaluation of the Development Potential, Int. J. Greenh Gas Control, 2007, vol. 1, pp. 396–417; https://doi.org/10.1016/S1750-5836(07)00068-0.

    Article  Google Scholar 

  59. Smith, L.D. and Sanchez, S., Assessment of Business Potential at Retail Sites: Empirical Findings from a US Supermarket Chain, Int. Rev. Retail Distrib. Consum. Res., 2003, vol. 13, pp. 37–58; https://doi.org/10.1080/0959396032000051684.

    Article  Google Scholar 

  60. Smith, J.M., Van Ness, H.C., and Abbott, M.M., Introdução à Termodinâmica da Engenharia Química, 7th ed., LTC, Amsterdam.

  61. Trevelim, W.J., Caldeiras Flamotubulares-Reconstituição de Prontuários, Rev. Eletrônica Da Fac Alta Floresta, 2013, vol. 2, pp. 1–31.

    Google Scholar 

  62. Junga, R., Chudy, P., and Pospolita, J., Uncertainty Estimation of the Efficiency of Small-Scale Boilers, Meas. J. Int. Meas. Confed., 2017, vol. 97, pp. 186–194; https://doi.org/10.1016/ j.measurement.2016.11.011.

    Article  ADS  Google Scholar 

  63. Seitron, E., Combustion Analyzer Chemist 500x, Seitron, 2015.

  64. Zhang, X., Chen, Q., Bradford, R., Sharifi, V., and Swithenbank, J.. Experimental Investigation and Mathematical Modelling of Wood Combustion in a Moving Grate Boiler, Fuel Process Technol., 2010, vol. 91, pp. 1491–1499; https://doi.org/10.1016/j.fuproc.2010.05.026.

    Article  Google Scholar 

  65. Fernández, R.G., García, C.P., Lavín, A.G., and Bueno De Las Heras, J.L., Study of Main Combustion Characteristics for Biomass Fuels Used in Boilers, Fuel Process Technol., 2012, vol. 103, pp. 16–26; https://doi.org/10.1016/j.fuproc.2011.12.032.

    Article  Google Scholar 

  66. Welter, C.A., Uso da Biomassa Florestal Como Estratégia de Redução dos Gases de Efeito Estufa: Estudo de Caso na Fumicultura do Sul do Brasil, Universidade Federal de Santa Maria, Santa Maria, 2017.

    Google Scholar 

  67. Turns, S.R., Introduction to Combustion: Concepts and Plications, 3rd ed., New York: McGraw-Hill, 2013.

    Google Scholar 

  68. Ruoso, A.C., Corrêa Bitencourt, L., Urach Sudati, L., Klunk, M.A., and Caetano, N.R., New Parameters for the Forest Biomass Waste Ecofirewood Manufacturing Process Optimization, Periódico Tchê Química, 2019, vol. 16, no. 32; DOI:10.52571/PTQ.v16.n32.2019.578_Periodico32_pgs_560_571

  69. Li, X., Xu, Z., Guan, C., and Huang, Z., Impact of Exhaust Gas Recirculation (EGR) on Soot Reactivity from a Diesel Engine Operating at High Load, Appl. Therm. Eng., 2014, vol. 68, pp. 100–106; https://doi.org/10.1016/j.applthermaleng.2014.04.029.

    Article  Google Scholar 

  70. Rector, L., Miller, P.J., Snook, S., and Ahmadi, M., Comparative Emissions Characterization of a Small-Scale Wood Chip-Fired Boiler and an Oil-Fired Boiler in a School Setting, Biomass Bioenergy, 2017, vol. 107, pp. 254–260; https://doi.org/10.1016/j.biombioe.2017.10.017.

    Article  Google Scholar 

  71. Caetano, N.R., Centeno, F.R., and Kyprianidis, K. Assessment of Thermal Radiation Heat Loss from Jet Diffusion Flames, Therm. Sci. Eng. Prog., 2018, vol. 7, pp. 241–247.

    Article  Google Scholar 

  72. Caetano, N.R., Stapasolla, T.Z., Peng, F.B., Schneider, P.S., Pereira, F.M., and Vielmo, H.A., Diffusion Flame Stability of Low Calorific Fuels, Def. Diffus. Forum, 2015, vol. 362, pp. 29–37; https://doi.org/ 10.4028/www.scientific.net/DDF.362.29.

    Article  Google Scholar 

  73. Viskanta, R. and Mengüç, M.P., Radiation Heat Transfer in Combustion Systems, Prog. Energy Combust. Sci., 1987, vol. 13, pp. 97–160; https://doi.org/10.1016/0360-1285(87)90008-6.

    Article  ADS  Google Scholar 

  74. Caetano, N.R. and Figueira da Silva, L.F., A Comparative Experimental Study of Turbulent Non Premixed Flames Stabilized by a Bluff-Body Burner, Exp. Therm. Fluid Sci., 2015, vol. 63, pp. 20–33; https://doi.org/10.1016/j.expthermflusci.2015.01.006.

    Article  Google Scholar 

  75. Kline, S. and McClintock, F., Describing Uncertainties in Single-Sample Experiments, Mech. Eng., 1953, vol. 75, pp. 3–8.

    Google Scholar 

  76. Moffat, R.J., Contributions to the Theory of Single-Sample Uncertainty Analysis, J. Fluids Eng., 1982, pp. 250–258.

  77. Bradley, D. and Matthews, K.J., Measurement of High Gas Temperatures with Fine Wire Thermocouples, J. Mech. Eng. Sci., 1968, vol. 10, pp. 299–305; https://doi.org/10.1243/jmes_jour_1968_010_048_02.

    Article  Google Scholar 

  78. Corporation, F., Fluke Corporation, LIF, Göttingen, Alemanha, Man Fluke 561, 2007.

  79. Walekhwa, P.N., Lars, D., and Mugisha, J., Economic Viability of Biogas Energy Production from Family-Sized Digesters in Uganda, Biomass Bioenergy, 2014, vol. 70, pp. 26–39; https://doi.org/10.1016/ j.biombioe.2014.03.008.

    Article  Google Scholar 

  80. Newnan, D.G., Lavelle, J.P., and Eschenbach, T., Engineering Economic Analysis, 13th ed., New York, NY: Oxford University Press, 2017; https://doi.org/10.1201/b18364-5.

  81. Song, S., Liu, P., Xu, J., Chong, C., Huang, X., Ma, L., et al., Life Cycle Assessment and Economic Evaluation of Pellet Fuel from Corn Straw in China: A Case Study in Jilin Province, Energy, 2017, vol. 130, pp. 373–381; https://doi.org/10.1016/j.energy.2017.04.068.

    Article  Google Scholar 

  82. Gajja, B.L., Chand, K., Singh, B., Mertia, R.S., and Kumar, S., Application of Modified Internal Rate of Return Method for Watershed Evaluation, Agric. Econ. Res. Rev., 2009, p. 22; https://doi.org/10.5958/j.0974-0279.27.1.013.

  83. Dudkiewicz, E. and Szałański, P., Overview of Exhaust Gas Heat Recovery Technologies for Radiant Heating Systems in Large Halls, Therm. Sci. Eng. Prog., 2020, vol. 18, p. 100522; https://doi.org/https:// doi.org/10.1016/j.tsep.2020.100522.

    Article  Google Scholar 

  84. Coelho, P. and Costa, M., Combustão, 1st ed., Portugal: Orion, 2007.

    Google Scholar 

  85. Pedley, T.J., Introduction to Fluid Dynamics, Sci. Mar., 1997, vol. 61, pp. 7–24; https://doi.org/10.2307/ j.ctvc77ddr.12.

  86. Leonardo, M.P., Duto Semi-Flexivel Alumi Para Coifa De 150 Mm (rl.c/1.5 mts), Merc Livre, 2017.

  87. Fdolinski, C., Trocador de Calor de 30 Placas em Inox, Merc Livre, 2017.

  88. BCB, Selic-Banco Central do Brasil, GovBr, 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Lorenzini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caetano, N.R., da Silva, B.P., Ruoso, A.C. et al. Energy Recovery Based on Exhaust Gas Recirculation and Heat Regeneration Processes Applied in a Firewood Boiler. J. Engin. Thermophys. 32, 482–501 (2023). https://doi.org/10.1134/S1810232823030062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232823030062

Navigation