Skip to main content
Log in

Reducing Ice Adhesion by Using Nanostructured Plastic Polymer Coatings for De-Icing of Wind Turbine Blades

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The results of studies on reducing ice adhesion via change in the original shape of the blade profile and its surface by means of microstructuring of different geometries are summarized. The influence of the height of nanograss on the intensity of ice formation was estimated for coatings investigated under icing conditions on a climatic aerodynamic stand for study of icing on model blades of wind turbines. The prospects and limitations of using polymeric plastic coatings for anti-icing systems for wind turbine blades are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

REFERENCES

  1. Wei, K., Yang, Y., Zuo, H., and Zhong, D., A Review on Ice Detection Technology and Ice Elimination Technology for Wind Turbine, Wind Energy, 2020, vol. 23, pp. 433–457.

    Article  ADS  Google Scholar 

  2. Grinats, E.S., Miller, A.B., Potapov, Yu.F., and Stasenko, A.L., Experimental and Theoretical Studies of the Processes of Icing of Nano-Modified Superhydrophobic and Conventional Surfaces, Vestnik MGOU. Ser.: Fiz.-Mat., 2013, vol. 3, pp. 84–92.

    Google Scholar 

  3. Okulov, V., Kabardin, I., Mukhin, D., Stepanov, K., and Okulova, N., Physical De-icing Techniques for Wind Turbine Blades, Energies, 2021, vol. 14, p. 6750.

    Article  Google Scholar 

  4. Marchenko, S.A., Zheleznyak, V.G., and Kuznetsova, V.A., Ice Adhesion. Determination Methods (Review), Trudy VIAM, 2022, vol. 9, no. 115, pp. 143–159.

    Google Scholar 

  5. Ignatyev, D.I., Khrabrov, A.N., Kortukova, A.I., et al., Interplay of Unsteady Aerodynamics and Flight Dynamics of Transport Aircraft in Icing Conditions, Aerospace Sci. Technol., 2020, vol. 104, p. 105914.

    Article  Google Scholar 

  6. Huang, X., Tepylo, N., Pommier-Budinger, V., et al., A Survey of Icephobic Coatings and Their Potential Use in a Hybrid Coating/Active Ice Protection System for Aerospace Applications, Progress Aerospace Sci., 2019, vol. 105, pp. 74–97.

    Article  ADS  Google Scholar 

  7. Cebeci, T. and Kafyeke, F., Aircraft Icing, Ann. Rev. Fluid Mech., 2003, vol. 35, no. 1, pp. 11–21.

    Article  ADS  MATH  Google Scholar 

  8. Kablov, E.N. and Startsev, V.O., System Analysis of Influence of Climate on Mechanical Properties of Polymer Composite Materials According to Domestic and Foreign Sources (Review), Aviats. Mater. Tekhnol., 2018, vol. 2, no. 51, pp. 47–58; DOI: 18577/2071-9140-2018-0-2-47-58

    Google Scholar 

  9. Lynch, F.T. and Khodadoust, A., Effects of Ice Accretions on Aircraft Aerodynamics, Progress Aerospace Sci., 2001, vol. 37, pp. 669–767.

    Article  ADS  Google Scholar 

  10. Airworthiness Directives. Boeing Aircraft, Federal Register, 2016, vol. 81, no. 78, pp. 23581–23586.

  11. Mason, J., Strapp, J., and Chow, P., The Ice Particle Threat to Engines in Flight, in 45th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2006, p. 206.

  12. Al-Khalil, K.M., Keith, T.G., and De Witt, K.J., Icing Calculations on a Typical Commercial Jet Engine Inlet Nacelle, J. Aircraft, 1997, vol. 34, no. 1, p. 87.

    Article  Google Scholar 

  13. Zheng, M., Guo, Z., Dong, W., and Guo, X., Experimental Investigation on Ice Accretion on a Rotating Aero-Engine Spinner with Hydrophobic Coating, Int. J. Heat Mass Transfer, 2019, vol. 136, pp. 404–414.

    Article  Google Scholar 

  14. Palacios, A.M., Palacios, J.L., and Sánchez, L., Eliciting a Human Understandable Model of Ice Adhesion Strength for Rotor Blade Leading Edge Materials from Uncertain Experimental Data, Expert Syst. Appl., 2012, vol. 39, pp. 10212–10225.

    Article  Google Scholar 

  15. Hakimian, A., Nazifi, S., and Ghasemi, H., in Ice Adhesion: Mechanism, Measurement and Mitigation, Metrology of Ice Adhesion, Scrivener Publishing, 2020, pp. 217–236; DOI: 10.1002/9781119640523.ch8

  16. Rönneberg, S., He, J., and Zhang, Z., The Need for Standards in Low Ice Adhesion Surface Research: A Critical Review, J. Adhesion Sci. Technol., 2019, vol. 34, no. 3, pp. 319–347.

    Article  Google Scholar 

  17. Wang, C., Zhang, W., Siva, A., et al., Laboratory Test for Ice Adhesion Strength Using Commercial Instrumentation, Langmuir, 2014, vol. 30, pp. 540–547.

    Article  Google Scholar 

  18. Douglass, R.G. and Palacios, J.L., Effects of Strain Rate Variation on the Shear Adhesion Strength of Impact Ice, Cold Regions Sci. Technol., 2021, vol. 181, p. 103168.

    Article  Google Scholar 

  19. Douglas, R.G., Palacios, J., and Schneeberger, G., Design, Fabrication, Calibration, and Testing of a Centrifugal Ice Adhesion Test Rig with Strain Rate Control Capability, in Procs. of the 2018 Atmospheric and Space Environments Conf., Atlanta, 2018, p. 3342.

  20. Kabardin, I.K., Meledin, V.G., Dvoynishnikov, S.V., Stepanov, K.I., Mukhin, D.G., Zuev, V.O., Gordienko, M.R., Kakaulin, S.V., Zezyulin, I.V., Ledovsky, V.E., and Zubanov, K.S., Features of Using Nanostructured Plastic Polymer Coatings for Protection against Icing of Industrial Structures, J. Eng. Therm., 2023, vol. 32, no. 1, pp. 54–61.

    Article  Google Scholar 

  21. Goldshtik, M.A., Khanin, V.M., and Ligai, V.G., A Liquid Drop on an Air Cushion as an Analogue of Leidenfrost Boiling, J. Fluid Mech., 1986, vol. 166, pp. 1–20.

    Article  ADS  MATH  Google Scholar 

  22. Sataeva, N.E., Boinovich, L.B., Emelyanenko, K.A., Domantovsky, A.G., and Emelyanenko, A.M., Laser-Assisted Processing of Aluminum Alloy for the Fabrication of Superhydrophobic Coatings Withstanding Multiple Degradation Factors, Surface Coatings Technol., 2020, vol. 397, p. 125993.

    Article  Google Scholar 

  23. Villeneuve, E., Brassard, J., and Volat, Ch., Effect of Various Surface Coatings on De-Icing/Anti-Icing Fluids Aerodynamic and Endurance Time, Aerospace, 2019, vol. 6, p. 114; DOI:10.3390/aerospace6100114

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Kabardin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meledin, V.G., Dvoynishnikov, S.V., Stepanov, K.I. et al. Reducing Ice Adhesion by Using Nanostructured Plastic Polymer Coatings for De-Icing of Wind Turbine Blades. J. Engin. Thermophys. 32, 591–595 (2023). https://doi.org/10.1134/S181023282303013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S181023282303013X

Navigation