Skip to main content

Advertisement

Log in

Genetic Engineering of Donor Pig for the First Human Cardiac Xenotransplantation: Combatting Rejection, Coagulopathy, Inflammation, and Excessive Growth

  • Heart Failure (HJ Eisen, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The first successful pig to human cardiac xenotransplantation in January 2022 represented a major step forward in the fields of heart failure, immunology, and applied genetic engineering, using a 10-gene edited (GE) pig. This review summarizes the evolution of preclinical modelling data which informed the use of each of the 10 genes modified in the 10-GE pig: GGTA1, Β4GalNT2, CMAH, CD46, CD55, TBM, EPCR, CD47, HO-1, and growth hormone receptor.

Recent Findings

The translation of the 10-GE pig from preclinical modelling to clinical compassionate xenotransplant use was the culmination of decades of research combating rejection, coagulopathy, inflammation, and excessive xenograft growth.

Summary

Understanding these 10 genes with a view to their combinatorial effects will be useful in anticipated xenotransplant clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EPCR:

Endothelial protein C receptor

Gal:

Galactose-alpha-1,3-galactose

GE:

Genetically engineered

GHR:

Growth hormone receptor

GHRKO:

Growth hormone receptor knockout

HAR:

Hyperacute rejection

HO-1:

Heme oxygenase-1

KO:

Knockout

Neu5Gc:

N-glycolylneuraminic acid

NHP:

Non-human primate

SDa:

SD antigen

TBM:

Thrombomodulin

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Savarese G, Becher PM, Lund LH, Seferovic P, Rosano GMC, Coats AJS. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res. 2023;118(17):3272–87.

    Article  PubMed  Google Scholar 

  2. Kilic A, Mathier MA, Hickey GW, Sultan I, Morell VO, Mulukutla SR, et al. Evolving trends in adult heart transplant with the 2018 heart allocation policy change. JAMA Cardiol. 2021;6(2):159–167.

  3. Griffith BP, Goerlich CE, Singh AK, Rothblatt M, Lau CL, Shah A, et al. Genetically modified porcine-to-human cardiac xenotransplantation. N Engl J Med. 2022;387(1):35–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. •• Mohiuddin MM, Singh AK, Scobie L, Goerlich CE, Grazioli A, Saharia K, et al. Graft dysfunction in compassionate use of genetically engineered pig-to-human cardiac xenotransplantation: a case report. Lancet. 2023. This is the definitive postmortem analysis from the first successful pig to human solid organ xenotransplant, reviewing both the evidence for success as well as areas for further investigation.

  5. Cooper DKC, Hara H, Iwase H, Yamamoto T, Li Q, Ezzelarab M, et al. Justification of specific genetic modifications in pigs for clinical organ xenotransplantation. Xenotransplantation. 2019;26(4):e12516.

    Article  PubMed  PubMed Central  Google Scholar 

  6. • Singh AK, Goerlich CE, Shah AM, Zhang T, Tatarov I, Ayares D, et al. Cardiac xenotransplantation: progress in preclinical models and prospects for clinical translation. Transpl Int. 2022;35:10171. This paper reviews the crucial breakthroughs that have sprung from pre-clinical modelling and previews future directions of xenotransplantation study.

  7. Niu D, Wei HJ, Lin L, George H, Wang T, Lee IH, et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science. 2017;357(6357):1303–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ladowski JM, Martens GR, Reyes LM, Hauptfeld-Dolejsek V, Tector M, Tector J. Examining epitope mutagenesis as a strategy to reduce and eliminate human antibody binding to class II swine leukocyte antigens. Immunogenetics. 2019;71(7):479–487.

  9. Schuurman H, Cheng J, Lam T. Pathology of xenograft rejection: a commentary. Xenotransplantation (Københaven). 2003;10(4):293–9.

    Article  Google Scholar 

  10. Cooper DKC, Ekser B, Tector AJ. Immunobiological barriers to xenotransplantation. Int J Surg. 2015;23:211–6.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Singh AK, Chan JL, DiChiacchio L, Hardy NL, Corcoran PC, Lewis BGT, et al. Cardiac xenografts show reduced survival in the absence of transgenic human thrombomodulin expression in donor pigs. Xenotransplantation. 2019;26(2):e12465.

    Article  PubMed  Google Scholar 

  12. Simon PM, Neethling FA, Taniguchi S, Goode PL, Zopf D, Hancock WW, et al. Intravenous infusion of Galα1–3Gal oligosaccharides in baboons delays hyperacute rejection of porcine heart xenografts. Transplantation. 1998;65(3):346–353.

  13. Azimzadeh A, Meyer C, Watier H, Beller J, Chenard-Neu M, Kieny R, et al. Removal of primate xenoreactive natural antibodies by extracorporeal perfusion of pig kidneys and livers. Transpl Immunol. 1998;6(1):13–22.

  14. Cooper DKC, Kuwaki K, Tseng Y, Dor, Frank J M F, Shimizu A, Houser SL, et al. Heart transplantation in baboons using α1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. Nat Med. 2005;11(1):29–31.

  15. Phelps CJ, Koike C, Vaught TD, Boone J, Wells KD, Chen S, et al. Production of α1,3-galactosyltransferase: deficient pigs. Science (American Association for the Advancement of Science). 2003;299(5605):411–414.

  16. Galili U. Induced anti-non gal antibodies in human xenograft recipients. Transplantation. 2012;93(1):11–16.

  17. McGregor CG, Ricci D, Miyagi N, Stalboerger PG, Du Z, Oehler EA, et al. Human CD55 expression blocks hyperacute rejection and restricts complement activation in Gal knockout cardiac xenografts. Transplantation. 2012;93(7):686–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao C, Cooper DKC, Dai Y, Hara H, Cai Z, Mou L. The Sda and Cad glycan antigens and their glycosyltransferase, β1,4GalNAcT‐II, in xenotransplantation. Xenotransplantation (Københaven). 2018;25(2):e12386-n/a.

  19. Byrne GW, Stalboerger PG, Du Z, Davis TR, McGregor CG. Identification of new carbohydrate and membrane protein antigens in cardiac xenotransplantation. Transplantation. 2011;91(3):287–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Estrada JL, Martens G, Li P, Adams A, Newell KA, Ford ML, et al. Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA 1/ CMAH /β4Gal NT 2 genes. Xenotransplantation (Københaven). 2015;22(3):194–202.

    Article  Google Scholar 

  21. Altman MO, Gagneux P. Absence of Neu5Gc and presence of anti-Neu5Gc antibodies in humans—an evolutionary perspective. Front Immunol. 2019;10:789.

  22. Zhu A, Hurst R. Anti-N-glycolylneuraminic acid antibodies identified in healthy human serum. Xenotransplantation (Københaven). 2002;9(6):376–81.

    Article  Google Scholar 

  23. Burlak C, Paris LL, Lutz AJ, Sidner RA, Estrada J, Li P, et al. Reduced binding of human antibodies to cells from GGTA1/CMAH KO pigs. Am J Transplant. 2014;14(8):1895–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang Z, Li P, Butler JR, Blankenship RL, Downey SM, Montgomery JB, et al. Immunogenicity of renal microvascular endothelial cells from genetically modified pigs. Transplantation. 2016;100(3):533–537.

  25. Yamamoto T, Iwase H, Patel D, Jagdale A, Ayares D, Anderson D, et al. Old World Monkeys are less than ideal transplantation models for testing pig organs lacking three carbohydrate antigens (Triple-Knockout). Sci Rep. 2020;10(1):9771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Diamond LE, Quinn CM, Martin MJ, Lawson J, Platt JL, Logan JS. A human CD46 transgenic pig model system for the study of discordant xenotransplantation. Transplantation. 2001;71(1):132–42.

    Article  CAS  PubMed  Google Scholar 

  27. Brodbeck WG, Kuttner-Kondo L, Mold C, Medof ME. Structure/function studies of human decay-accelerating factor. Immunology. 2000;101(1):104–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shimizu I, Smith NR, Guiling Z, Medof E, Sykes M. Decay-accelerating factor prevents acute humoral rejection induced by low levels of anti-αGal natural antibodies. Transplantation. 2006;81(1):95–100.

  29. Schuurman H, Pino-Chavez G, Phillips MJ, Thomas L, White DJG, Cozzi E. Incidence of hyperacute rejection in pig-to-primate transplantation using organs from hDAF-transgenic donors. Transplantation. 2002;73(7):1146–1151.

  30. Waterworth PD, Cozzi E, Tolan MJ, Langford G, Braidley P, Chavez G, et al. Pig-to-primate cardiac xenotransplantation and cyclophosphamide therapy. Transplant Proc. 1997;29(1):899–900.

  31. Azimzadeh AM, Kelishadi SS, Ezzelarab MB, Singh AK, Stoddard T, Iwase H, et al. Early graft failure of GalTKO pig organs in baboons is reduced by expression of a human complement pathway-regulatory protein. Xenotransplantation (Københaven). 2015;22(4):310–6.

    Article  Google Scholar 

  32. Miyagawa S, Shirakura R, Iwata K, Nakata S, Matsumiya G, Izutani H, et al. Effects of transfected complement regulatory proteins, MCP, DAF, and MCP/DAE hybrid, on complement-mediated swine endothelial cell lysis. Transplantation. 1994;58(7):834–40.

    Article  CAS  PubMed  Google Scholar 

  33. Fischer K, Kraner-Scheiber S, Petersen B, Rieblinger B, Buermann A, Flisikowska T, et al. Efficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing. Sci Rep. 2016;6(1):29081.

  34. Byrne GW, Mccurry KR, Martin MJ, Mcclellan SM, Platt JL, Logan JS. Transgenic pigs expressing human CD59 and decay-accelerating factor produce an intrinsic barrier to complement-mediated damage. Transplantation. 1997;63(1):149–155.

  35. Johnson S, Brooks NJ, Smith RA, Lea SM, Bubeck D. Structural basis for recognition of the pore-forming toxin intermedilysin by human complement receptor CD59. Cell Rep. 2013;3(5):1369–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Aigner B, Klymiuk N, Wolf E. Transgenic pigs for xenotransplantation: selection of promoter sequences for reliable transgene expression. Curr Opin Organ Transplant. 2010;15(2):201–6.

    Article  PubMed  Google Scholar 

  37. Weiler H, Isermann BH. Thrombomodulin. J Thromb Haemost. 2003;1(7):1515–24.

    Article  CAS  PubMed  Google Scholar 

  38. Salvaris EJ, Moran CJ, Roussel JC, Fisicaro N, Robson SC, Cowan PJ. Pig endothelial protein C receptor is functionally compatible with the human protein C pathway. Xenotransplantation. 2020;27(2):e12557.

    Article  PubMed  Google Scholar 

  39. Crikis S, Zhang XM, Dezfouli S, Dwyer KM, Murray-Segal LM, Salvaris E, et al. Antiinflammatory and anticoagulant effects of transgenic expression of human thrombomodulin in mice. Am J Transplant. 2010;10(2):242–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mohiuddin MM, Singh AK, Corcoran PC, Thomas Iii ML, Clark T, Lewis BG, et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat Commun. 2016;7:11138.

  41. Iwase H, Hara H, Ezzelarab M, Li T, Zhang Z, Gao B, et al. Immunological and physiological observations in baboons with life-supporting genetically engineered pig kidney grafts. Xenotransplantation. 2017;24(2).

  42. Ide K, Wang H, Tahara H, Liu J, Wang X, Asahara T, et al. Role for CD47-SIRPalpha signaling in xenograft rejection by macrophages. Proc Natl Acad Sci U S A. 2007;104(12):5062–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yan JJ, Koo TY, Lee HS, Lee WB, Kang B, Lee JG, et al. Role of human CD200 overexpression in pig-to-human xenogeneic immune response compared with human CD47 overexpression. Transplantation. 2018;102(3):406–16.

    Article  PubMed  Google Scholar 

  44. Tena A, Sachs DH, Mallard C, Yang Y, Tasaki M, Farkash E, et al. Prolonged survival of pig skin on baboons following administration of pig cells expressing human CD47. Transplantation. 2017;101(2):316–321.

  45. Takeuchi K, Ariyoshi Y, Shimizu A, Okumura Y, Cara-Fuentes G, Garcia GE, et al. Expression of human CD47 in pig glomeruli prevents proteinuria and prolongs graft survival following pig-to-baboon xenotransplantation. Xenotransplantation. 2021;28(6):e12708.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Camara NO, Soares MP. Heme oxygenase-1 (HO-1), a protective gene that prevents chronic graft dysfunction. Free Radic Biol Med. 2005;38(4):426–35.

    Article  PubMed  Google Scholar 

  47. Petersen B, Ramackers W, Lucas-Hahn A, Lemme E, Hassel P, Queißer A, et al. Transgenic expression of human heme oxygenase-1 in pigs confers resistance against xenograft rejection during ex vivo perfusion of porcine kidneys. Xenotransplantation (Københaven). 2011;18(6):355–68.

    Article  Google Scholar 

  48. Soares MP, Lin Y, Anrather J, Csizmadia E, Takigami K, Sato K, et al. Expression of heme oxygenase-1 can determine cardiac xenograft survival. Nat Med. 1998;4(9):1073–7.

    Article  CAS  PubMed  Google Scholar 

  49. Goerlich CE, Griffith B, Hanna P, Hong SN, Ayares D, Singh AK, et al. The growth of xenotransplanted hearts can be reduced with growth hormone receptor knockout pig donors. J Thorac Cardiovasc Surg. 2023;165(2):e69–81.

    Article  PubMed  Google Scholar 

  50. Hinrichs A, Riedel EO, Klymiuk N, Blutke A, Kemter E, Längin M, et al. Growth hormone receptor knockout to reduce the size of donor pigs for preclinical xenotransplantation studies. Xenotransplantation. 2021;28(2):e12664.

    Article  PubMed  Google Scholar 

  51. Troncoso R, Ibarra C, Vicencio JM, Jaimovich E, Lavandero S. New insights into IGF-1 signaling in the heart. Trends Endocrinol Metab. 2014;25(3):128–137.

  52. Mohiuddin MM, Singh AK, Scobie L, Goerlich CE, Grazioli A, Saharia K, et al. Graft dysfunction in compassionate use of genetically engineered pig-to-human cardiac xenotransplantation: a case report. Lancet. 2023;402(10399):397–410.

    Article  PubMed  Google Scholar 

  53. Montgomery RA, Stern JM, Lonze BE, Tatapudi VS, Mangiola M, Wu M, et al. Results of two cases of pig-to-human kidney xenotransplantation. N Engl J Med. 2022;386(20):1889–98.

    Article  CAS  PubMed  Google Scholar 

  54. Porrett PM, Orandi BJ, Kumar V, Houp J, Anderson D, Cozette Killian A, et al. First clinical-grade porcine kidney xenotransplant using a human decedent model. Am J Transplant. 2022;22(4):1037–53.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad M. Mohiuddin.

Ethics declarations

Conflict of Interest

Dr. Ayares is the President and CEO of Revivicor and reports other from Revivicor Inc. and personal fees from Revivicor Inc. In addition, Dr. Ayares has a patent on Multitransgenic pigs for xenotransplantation issued. Dr. Mohiuddin reports research funding and pigs provided by United Therapeutics, Inc. and drugs provided by Eledon Pharmaceuticals, Tonix Pharmaceuticals, and Kiniksa Pharmaceuticals. In addition, Dr. Mohiuddin has a patent pending with Kiniksa Pharmaceuticals on the Use of drug KPL 404 to overcome rejection. The other authors have no disclosures to report.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

IRB Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singireddy, S., Tully, A., Galindo, J. et al. Genetic Engineering of Donor Pig for the First Human Cardiac Xenotransplantation: Combatting Rejection, Coagulopathy, Inflammation, and Excessive Growth. Curr Cardiol Rep 25, 1649–1656 (2023). https://doi.org/10.1007/s11886-023-01978-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-023-01978-4

Keywords

Navigation