Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 9, 2023

Green creation of CoFe2O4 nanosorbent for superior toxic Cd ions elimination

  • Laila S. Alqarni ORCID logo EMAIL logo

Abstract

A mesoporous cobalt ferrite nanostructure was prepared by a green chemistry approach using Pimpinella anisum extract for Cd (II) ions elimination from an aqueous medium. The metal ions adsorption was explored under varying operating conditions, comprising of the pH, initial adsorbate concentration, and contact time. The synthesized sorbent was characterized by various techniques where the XRD data verified a ferrite structure of ≈25 nm crystallite size and the EDX elemental analysis affirmed the presence of the corresponding elements. The CoFe2O4 established porosity characteristic of 10.8 m2 g−1 BET-specific surface area and 0.023 cm3 g−1 pore volume values. Batch mode experiments ascertained that the Cd (II) ions uptake was pH-dependent, with peak removal of 170 mg/g accomplished at pH = 5. The adsorption process of the metal ions onto the mesoporous nanomaterial surface fitted well with the Langmuir isotherm and pseudo-second-order kinetics models. The mechanistic aspects indicated the role of intra-particle and film diffusion in the adsorption process. The adsorbent could efficiently remove the pollutant up 74.3 % to four cycles of successful regeneration. This investigation endorsed that CoFe2O4 might be potent candidate for heavy metals from aqueous systems.


Corresponding author: Laila S. Alqarni, Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh, 11432, Saudi Arabia, E-mail: .

Funding source: the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia.the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU)

Award Identifier / Grant number: the project number IFP-IMSIU-2023038

Acknowledgments

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research through the project number IFP-IMSIU-2023038. The authors also appreciate the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) for supporting and supervising this project.

  1. Research ethics: The experimental protocol was approved by IMISU research Office.

  2. Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The author states no conflict of interest

  4. Research funding: The Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research through the project number IFP-IMSIU-2023038 & the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

[1] G. d. V. Brião, J. R. de Andrade, M. G. C. da Silva, and M. G. A. Vieira, “Removal of toxic metals from water using chitosan-based magnetic adsorbents. A review,” Environ. Chem. Lett., vol. 18, pp. 1145–1168, 2020, https://doi.org/10.1007/s10311-020-01003-y.Search in Google Scholar

[2] G. A. Engwa, P. U. Ferdinand, F. N. Nwalo, and M. N. Unachukwu, “Mechanism and health effects of heavy metal toxicity in humans,” in Poisoning in the Modern World-New Tricks for an Old Dog, vol. 10, London, Intechopen, 2019, pp. 70–90.Search in Google Scholar

[3] R. Bhateria and R. Singh, “A review on nanotechnological application of magnetic iron oxides for heavy metal removal,” J. Water Process Eng., vol. 31, p. 100845, 2019, https://doi.org/10.1016/j.jwpe.2019.100845.Search in Google Scholar

[4] S. A. Anjum, M. Tanveer, S. Hussain, et al.., “Cadmium toxicity in Maize (Zea mays L.): consequences on antioxidative systems, reactive oxygen species and cadmium accumulation,” Environ. Sci. Pollut. Res., vol. 22, pp. 17022–17030, 2015, https://doi.org/10.1007/s11356-015-4882-z.Search in Google Scholar PubMed

[5] G. Genchi, M. S. Sinicropi, G. Lauria, A. Carocci, and A. Catalano, “The effects of cadmium toxicity,” Int. J. Environ. Res. Publ. Health, vol. 17, no. 11, p. 3782, 2020, https://doi.org/10.3390/ijerph17113782.Search in Google Scholar PubMed PubMed Central

[6] D. Đukić-Ćosić, K. Baralić, D. Javorac, A. B. Djordjevic, and Z. Bulat, “An overview of molecular mechanisms in cadmium toxicity,” Curr. Opin. Toxicol., vol. 19, pp. 56–62, 2020, https://doi.org/10.1016/j.cotox.2019.12.002.Search in Google Scholar

[7] E. Vetrimurugan, K. Brindha, L. Elango, and O. M. Ndwandwe, “Human exposure risk to heavy metals through groundwater used for drinking in an intensively irrigated river delta,” Appl. Water Sci., vol. 7, pp. 3267–3280, 2017, https://doi.org/10.1007/s13201-016-0472-6.Search in Google Scholar

[8] D. Mehta, S. Mazumdar, and S. Singh, “Magnetic adsorbents for the treatment of water/wastewater—a review,” J. Water Process Eng., vol. 7, pp. 244–265, 2015, https://doi.org/10.1016/j.jwpe.2015.07.001.Search in Google Scholar

[9] L. de Castro Alves, S. Yáñez-Vilar, Y. Piñeiro-Redondo, and J. Rivas, “Novel magnetic nanostructured beads for cadmium (II) removal,” Nanomaterials, vol. 9, no. 3, p. 356, 2019, https://doi.org/10.3390/nano9030356.Search in Google Scholar PubMed PubMed Central

[10] A. N. Hosain, A. El Nemr, A. El Sikaily, M. E. Mahmoud, and M. F. Amira, “Surface modifications of nanochitosan coated magnetic nanoparticles and their applications in Pb (II), Cu (II) and Cd (II) removal,” J. Environ. Chem. Eng., vol. 8, no. 5, p. 104316, 2020, https://doi.org/10.1016/j.jece.2020.104316.Search in Google Scholar

[11] D. Prabu, P. Senthil Kumar, S. Indraganti, S. Sathish, J. Aravind Kumar, and K. Vijai Anand, “One-step fabrication of amino-functionalized Fe3O4@SiO2 core-shell magnetic nanoparticles as a potential novel platform for removal of Cadmium (II) from aqueous solution,” Sustainability, vol. 14, no. 4, p. 2290, 2022, https://doi.org/10.3390/su14042290.Search in Google Scholar

[12] F. Tajali Rad, H. Kefayati, and S. Shariati, “Synthesis of propyl aminopyridine modified magnetite nanoparticles for cadmium (II) adsorption in aqueous solutions,” Appl. Organomet. Chem., vol. 33, no. 2, p. e4732, 2019, https://doi.org/10.1002/aoc.4732.Search in Google Scholar

[13] P. Nasehi, B. Mahmoudi, S. F. Abbaspour, and M. S. Moghaddam, “Cadmium adsorption using novel MnFe2O4-TiO2-UIO-66 magnetic nanoparticles and condition optimization using a response surface methodology,” RSC Adv., vol. 9, no. 35, pp. 20087–20099, 2019, https://doi.org/10.1039/c9ra03430g.Search in Google Scholar PubMed PubMed Central

[14] M. Bai, Y. Chai, A. Chen, et al.., “Enhancing cadmium removal efficiency through spinel ferrites modified biochar derived from agricultural waste straw,” J. Environ. Chem. Eng., vol. 11, no. 1, p. 109027, 2023, https://doi.org/10.1016/j.jece.2022.109027.Search in Google Scholar

[15] H. Abdolmohammad-Zadeh and Z. Ayazi, “Zinc (II)-doped manganese ferrite nanoparticles as an efficient magnetic adsorbent for cadmium extraction from water samples,” Anal. Bioanal. Chem. Res., vol. 9, no. 2, pp. 209–220, 2022.Search in Google Scholar

[16] W. A. Khoso, N. Haleem, M. A. Baig, and Y. Jamal, “Synthesis, characterization and heavy metal removal efficiency of nickel ferrite nanoparticles (NFN’s),” Sci. Rep., vol. 11, no. 1, p. 3790, 2021, https://doi.org/10.1038/s41598-021-83363-1.Search in Google Scholar PubMed PubMed Central

[17] N. Tran and T. J. Webster, “Magnetic nanoparticles: biomedical applications and challenges,” J. Mater. Chem., vol. 20, no. 40, pp. 8760–8767, 2010, https://doi.org/10.1039/c0jm00994f.Search in Google Scholar

[18] S. Jovanovićc, K. Kumrićc, D. Bajuk-Bogdanovićc, et al.., “Cobalt ferrite nanospheres as a potential magnetic adsorbent for chromium (VI) ions,” J. Nanosci. Nanotechnol., vol. 19, no. 8, pp. 5027–5034, 2019, https://doi.org/10.1166/jnn.2019.16803.Search in Google Scholar PubMed

[19] K. Kombaiah, J. J. Vijaya, L. J. Kennedy, M. Bououdina, R. J. Ramalingam, and H. A. Al-Lohedan, “Okra extract-assisted green synthesis of CoFe2O4 nanoparticles and their optical, magnetic, and antimicrobial properties,” Mater. Chem. Phys., vol. 204, pp. 410–419, 2018, https://doi.org/10.1016/j.matchemphys.2017.10.077.Search in Google Scholar

[20] S. Rana, J. Philip, and B. Raj, “Micelle based synthesis of cobalt ferrite nanoparticles and its characterization using Fourier Transform Infrared Transmission Spectrometry and Thermogravimetry,” Mater. Chem. Phys., vol. 124, no. 1, pp. 264–269, 2010, https://doi.org/10.1016/j.matchemphys.2010.06.029.Search in Google Scholar

[21] I.-M. Chung, I. Park, K. Seung-Hyun, M. Thiruvengadam, and G. Rajakumar, “Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications,” Nanoscale Res. Lett., vol. 11, no. 1, pp. 1–14, 2016, https://doi.org/10.1186/s11671-016-1257-4.Search in Google Scholar PubMed PubMed Central

[22] T. Tatarchuk, M. Liaskovska, V. Kotsyubynsky, and M. Bououdina, “Green synthesis of cobalt ferrite nanoparticles using Cydonia oblonga extract: structural and mössbauer studies,” Mol. Cryst. Liq. Cryst., vol. 672, no. 1, pp. 54–66, 2018, https://doi.org/10.1080/15421406.2018.1542107.Search in Google Scholar

[23] A. Miri, M. Sarani, A. Najafidoust, M. Mehrabani, F. A. Zadeh, and R. S. Varma, “Photocatalytic performance and cytotoxic activity of green-synthesized cobalt ferrite nanoparticles,” Mater. Res. Bull., vol. 149, p. 111706, 2022, https://doi.org/10.1016/j.materresbull.2021.111706.Search in Google Scholar

[24] N. Dhanda, P. Thakur, and A. Thakur, “Green synthesis of cobalt ferrite: a study of structural and optical properties,” Mater. Today: Proc., vol. 73, pp. 237–240, 2023, https://doi.org/10.1016/j.matpr.2022.07.202.Search in Google Scholar

[25] T. Tatarchuk, N. Danyliuk, A. Shyichuk, V. Kotsyubynsky, I. Lapchuk, and V. Mandzyuk, “Green synthesis of cobalt ferrite using grape extract: the impact of cation distribution and inversion degree on the catalytic activity in the decomposition of hydrogen peroxide,” Emergent Mater., vol. 5, pp. 1–15, 2021. https://doi.org/10.1007/s42247-021-00323-1.Search in Google Scholar

[26] D. Gingasu, I. Mindru, L. Patron, et al.., “Green synthesis methods of CoFe2O4 and Ag-CoFe2O4 nanoparticles using hibiscus extracts and their antimicrobial potential,” J. Nanomater., vol. 2016, pp. 1–12, 2016. https://doi.org/10.1155/2016/2106756.Search in Google Scholar

[27] C. Stein, M. T. S. Bezerra, G. H. A. Holanda, J. André-Filho, and P. C. Morais, “Structural and magnetic properties of cobalt ferrite nanoparticles synthesized by co-precipitation at increasing temperatures,” AIP Adv., vol. 8, no. 5, p. 056303, 2018, https://doi.org/10.1063/1.5006321.Search in Google Scholar

[28] M. Miranda and J. Sasaki, “The limit of application of the Scherrer equation,” Acta Crystallogr. A: Found. Adv., vol. 74, no. 1, pp. 54–65, 2018, https://doi.org/10.1107/s2053273317014929.Search in Google Scholar

[29] M. Ismail, K. Taha, A. Modwi, and L. Khezami, “ZnO nanoparticles: surface and X-ray profile analysis,” J. Ovonic Res., vol. 14, no. 5, pp. 381–393, 2018.Search in Google Scholar

[30] A. K. Zak, W. Abd. Majid, M. Abrishami, and R. Yousefi, “X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods,” Solid State Sci., vol. 13, no. 1, pp. 251–256, 2011, https://doi.org/10.1016/j.solidstatesciences.2010.11.024.Search in Google Scholar

[31] T. Pandiyarajan and B. Karthikeyan, “Cr doping induced structural, phonon and excitonic properties of ZnO nanoparticles,” J. Nanopart. Res., vol. 14, no. 1, p. 647, 2012, https://doi.org/10.1007/s11051-011-0647-x.Search in Google Scholar

[32] P. Bindu and S. Thomas, “Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis,” J. Theor. Appl. Phys., vol. 8, no. 4, pp. 123–134, 2014, https://doi.org/10.1007/s40094-014-0141-9.Search in Google Scholar

[33] T. Ungár, “Characterization of nanocrystalline materials by X-ray line profile analysis,” J. Mater. Sci., vol. 42, no. 5, pp. 1584–1593, 2007, https://doi.org/10.1007/s10853-006-0696-1.Search in Google Scholar

[34] A. M. Joseph, B. Thangaraj, S. Gomathi, and A. Adaikalam, “Synthesis and characterization of cobalt ferrite magnetic nanoparticles coated with polyethylene glycol,” Adv. Nano Biol. M&D, vol. 1, pp. 71–77, 2017.Search in Google Scholar

[35] N. Sanpo, J. Tharajak, Y. Li, C. C. Berndt, C. Wen, and J. Wang, “Biocompatibility of transition metal-substituted cobalt ferrite nanoparticles,” J. Nanoparticle Res., vol. 16, pp. 1–13, 2014, https://doi.org/10.1007/s11051-014-2510-3.Search in Google Scholar

[36] J. B. Condon, Surface Area and Porosity Determinations by Physisorption: Measurements and Theory, Amsterdam, Elsevier, 2006.Search in Google Scholar

[37] J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin, and K. Sing, Adsorption By Powders and Porous Solids: Principles, Methodology and Applications, Cambridge, Academic Press, 2013.Search in Google Scholar

[38] G. Xiong, L. Luo, C. Li, and X. Yang, “Synthesis of mesoporous ZnO (m-ZnO) and catalytic performance of the Pd/m-ZnO catalyst for methanol steam reforming,” Energy Fuels, vol. 23, no. 3, pp. 1342–1346, 2009, https://doi.org/10.1021/ef8008376.Search in Google Scholar

[39] E. Cheraghi, E. Ameri, and A. Moheb, “Adsorption of cadmium ions from aqueous solutions using sesame as a low-cost biosorbent: kinetics and equilibrium studies,” Int. J. Environ. Sci. Technol., vol. 12, pp. 2579–2592, 2015, https://doi.org/10.1007/s13762-015-0812-3.Search in Google Scholar

[40] H. Liu, Q. Gao, P. Dai, J. Zhang, C. Zhang, and N. Bao, “Preparation and characterization of activated carbon from lotus stalk with guanidine phosphate activation: sorption of Cd (II),” J. Anal. Appl. Pyrolysis, vol. 102, pp. 7–15, 2013, https://doi.org/10.1016/j.jaap.2013.04.010.Search in Google Scholar

[41] C. O. Aniagor, M. Elshkankery, A. J. Fletcher, O. M. Morsy, E. S. Abdel-Halim, and A. Hashem, “Equilibrium and kinetic modelling of aqueous cadmium ion and activated carbon adsorption system,” Water Conserv. Sci. Eng., vol. 6, no. 2, pp. 95–104, 2021, https://doi.org/10.1007/s41101-021-00107-y.Search in Google Scholar

[42] T. Lei, S. J. Li, F. Jiang, et al.., “Adsorption of cadmium ions from an aqueous solution on a highly stable dopamine-modified magnetic nano-adsorbent,” Nanoscale Res. Lett., vol. 14, no. 1, pp. 1–17, 2019, https://doi.org/10.1186/s11671-019-3154-0.Search in Google Scholar PubMed PubMed Central

[43] M. A. Al-Ghouti and D. A. Da’ana, “Guidelines for the use and interpretation of adsorption isotherm models: a review,” J. Hazard. Mater., vol. 393, p. 122383, 2020, https://doi.org/10.1016/j.jhazmat.2020.122383.Search in Google Scholar PubMed

[44] S. Kalam, S. A. Abu-Khamsin, M. S. Kamal, and S. Patil, “Surfactant adsorption isotherms: a review,” ACS Omega, vol. 6, no. 48, pp. 32342–32348, 2021, https://doi.org/10.1021/acsomega.1c04661.Search in Google Scholar PubMed PubMed Central

[45] I.-H. T. Kuete, D. R. T. Tchuifon, G. N. Ndifor-Angwafor, A. T. Kamdem, and S. G. Anagho, “Kinetic, isotherm and thermodynamic studies of the adsorption of thymol blue onto powdered activated carbons from garcinia cola nut shells impregnated with H3PO4 and KOH: non-linear regression analysis,” J. Encapsulation Adsorpt. Sci., vol. 10, no. 1, pp. 1–27, 2020, https://doi.org/10.4236/jeas.2020.101001.Search in Google Scholar

[46] N. Al-Awaji, M. Boukriba, H. Idriss, M. A. Ben Aissa, M. Bououdina, and A. Modwi, “Green synthesis Ca-MgO nanosorbent for the uptake of cobalt ions from aqueous media,” Adv. Mater. Sci. Eng., vol. 2022, p. 2022, 2022. https://doi.org/10.1155/2022/9174538.Search in Google Scholar

[47] N. Ayawei, A. N. Ebelegi, and D. Wankasi, “Modelling and interpretation of adsorption isotherms,” J. Chem., vol. 2017, pp. 1–11, 2017. https://doi.org/10.1155/2017/3039817.Search in Google Scholar

[48] B. O. Isiuku, P. C. Okonkwo, and C. D. Emeagwara, “Batch adsorption isotherm models applied in single and multicomponent adsorption systems–a review,” J. Dispersion Sci. Technol., vol. 42, no. 12, pp. 1879–1897, 2021, https://doi.org/10.1080/01932691.2021.1964988.Search in Google Scholar

[49] K. H. Chu, “Revisiting the Temkin isotherm: dimensional inconsistency and approximate forms,” Ind. Eng. Chem. Res., vol. 60, no. 35, pp. 13140–13147, 2021, https://doi.org/10.1021/acs.iecr.1c01788.Search in Google Scholar

[50] M. M. Majd, V. Kordzadeh-Kermani, V. Ghalandari, A. Askari, and M. Sillanpää, “Adsorption isotherm models: a comprehensive and systematic review (2010−2020),” Sci. Total Environ., vol. 812, p. 151334, 2022, https://doi.org/10.1016/j.scitotenv.2021.151334.Search in Google Scholar PubMed

[51] J. S. Piccin, T. R. S. A. Cadaval, L. A. A. De Pinto, and G. L. Dotto, “Adsorption Isotherms in Liquid Phase: Experimental, Modeling, and Interpretations,” in Adsorption Processes for Water Treatment and Purification, New York City, Springer, 2017, pp. 19–51.10.1007/978-3-319-58136-1_2Search in Google Scholar

[52] L. Khezami, A. Modwi, I. Ghiloufi, et al.., “Effect of aluminum loading on structural and morphological characteristics of ZnO nanoparticles for heavy metal ion elimination,” Environ. Sci. Pollut. Res., vol. 27, no. 3, pp. 3086–3099, 2020, https://doi.org/10.1007/s11356-019-07279-0.Search in Google Scholar PubMed

[53] H. Freundlich, “Over the adsorption in solution,” J. Phys. Chem., vol. 57, no. 385471, pp. 1100–1107, 1906.Search in Google Scholar

[54] M. I. Temkin, “Adsorption equilibrium and the kinetics of processes on nonhomogeneous surfaces and in the interaction between adsorbed molecules,” Zh. Fiz. Chim., vol. 15, pp. 296–332, 1941.Search in Google Scholar

[55] S. Singh, D. Kapoor, S. Khasnabis, J. Singh, and P. C. Ramamurthy, “Mechanism and kinetics of adsorption and removal of heavy metals from wastewater using nanomaterials,” Environ. Chem. Lett., vol. 19, pp. 2351–2381, 2021, https://doi.org/10.1007/s10311-021-01196-w.Search in Google Scholar

[56] S. Basha, Z. Murthy, and B. Jha, “Sorption of Hg (II) onto Carica papaya: experimental studies and design of batch sorber,” Chem. Eng. J., vol. 147, nos. 2–3, pp. 226–234, 2009, https://doi.org/10.1016/j.cej.2008.07.005.Search in Google Scholar

[57] X. Liu, H. Pang, X. Liu, et al.., “Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions,” The Innovation, vol. 2, no. 1, p. 100076, 2021. https://doi.org/10.1016/j.xinn.2021.100076.Search in Google Scholar PubMed PubMed Central

[58] M. Zamouche, A. Habib, K. Saaidia, and M. Bencheikh Lehocine, “Batch mode for adsorption of crystal violet by cedar cone forest waste,” SN Appl. Sci., vol. 2, no. 2, p. 198, 2020, https://doi.org/10.1007/s42452-020-1976-0.Search in Google Scholar

[59] A. S. Yusuff, L. T. Popoola, and E. O. Babatunde, “Adsorption of cadmium ion from aqueous solutions by copper-based metal organic framework: equilibrium modeling and kinetic studies,” Appl. Water Sci., vol. 9, pp. 1–11, 2019, https://doi.org/10.1007/s13201-019-0991-z.Search in Google Scholar

[60] C. Jeon, “Adsorption behavior of cadmium ions from aqueous solution using pen shells,” J. Ind. Eng. Chem., vol. 58, pp. 57–63, 2018, https://doi.org/10.1016/j.jiec.2017.09.007.Search in Google Scholar

[61] T. T. P. N. X. Trinh, D. T. Quang, T. H. Tu, et al.., “Fabrication, characterization, and adsorption capacity for cadmium ions of graphene aerogels,” Synth. Met., vol. 247, pp. 116–123, 2019, https://doi.org/10.1016/j.synthmet.2018.11.020.Search in Google Scholar

[62] S. K. Lagergren, “About the theory of so-called adsorption of soluble substances,” Sven. Vetenskapsakademiens Handl., vol. 24, pp. 1–39, 1898.Search in Google Scholar

[63] E. A. Abdelrahman, Y. Abou El-Reash, H. M. Youssef, Y. H. Kotp, and R. Hegazey, “Utilization of rice husk and waste aluminum cans for the synthesis of some nanosized zeolite, zeolite/zeolite, and geopolymer/zeolite products for the efficient removal of Co (II), Cu (II), and Zn (II) ions from aqueous media,” J. Hazard. Mater., vol. 401, p. 123813, 2021. https://doi.org/10.1016/j.jhazmat.2020.123813.Search in Google Scholar PubMed

[64] S. Chien and W. Clayton, “Application of Elovich equation to the kinetics of phosphate release and sorption in soils,” Soil Sci. Soc. Am. J., vol. 44, no. 2, pp. 265–268, 1980, https://doi.org/10.2136/sssaj1980.03615995004400020013x.Search in Google Scholar

[65] L. Lu, M. Brennan Pecha, G. M. Wiggins, et al.., “Multiscale CFD simulation of biomass fast pyrolysis with a machine learning derived intra-particle model and detailed pyrolysis kinetics,” Chem. Eng. J., vol. 431, p. 133853, 2022, https://doi.org/10.1016/j.cej.2021.133853.Search in Google Scholar

[66] B. Hameed and M. El-Khaiary, “Equilibrium, kinetics and mechanism of malachite green adsorption on activated carbon prepared from bamboo by K2CO3 activation and subsequent gasification with CO2,” J. Hazard. Mater., vol. 157, nos. 2-3, pp. 344–351, 2008, https://doi.org/10.1016/j.jhazmat.2007.12.105.Search in Google Scholar PubMed

[67] C. Tian, H. Zhao, H. Sun, K. Xiao, and P. Keung Wong, “Enhanced adsorption and photocatalytic activities of ultrathin graphitic carbon nitride nanosheets: kinetics and mechanism,” Chem. Eng. J., vol. 381, p. 122760, 2020, https://doi.org/10.1016/j.cej.2019.122760.Search in Google Scholar

[68] H. Sayğılı and F. Güzel, “Performance of new mesoporous carbon sorbent prepared from grape industrial processing wastes for malachite green and Congo red removal,” Chem. Eng. Res. Des., vol. 100, pp. 27–38, 2015, https://doi.org/10.1016/j.cherd.2015.05.014.Search in Google Scholar

[69] L. C. Maremeni, S. J. Modise, F. M. Mtunzi, M. J. Klink, and V. E. Pakade, “Adsorptive removal of hexavalent chromium by diphenylcarbazide-grafted Macadamia nutshell powder,” Bioinorg. Chem. Appl., vol. 2018, pp. 1–14, 2018.10.1155/2018/6171906Search in Google Scholar PubMed PubMed Central

[70] A. S. Eltaweil, E. M. Abd El-Monaem, G. M. El-Subruiti, M. M. Abd El-Latif, and A. M. Omer, “Fabrication of UiO-66/MIL-101 (Fe) binary MOF/carboxylated-GO composite for adsorptive removal of methylene blue dye from aqueous solutions,” RSC Adv., vol. 10, no. 32, pp. 19008–19019, 2020, https://doi.org/10.1039/d0ra02424d.Search in Google Scholar PubMed PubMed Central

[71] H. Lin, S. Han, Y. Dong, and Y. He, “The surface characteristics of hyperbranched polyamide modified corncob and its adsorption property for Cr (VI),” Appl. Surf. Sci., vol. 412, pp. 152–159, 2017, https://doi.org/10.1016/j.apsusc.2017.03.061.Search in Google Scholar

[72] J. Wang and X. Guo, “Adsorption kinetic models: physical meanings, applications, and solving methods,” J. Hazard Mater., vol. 390, 2020, Art. no. 122156, https://doi.org/10.1016/j.jhazmat.2020.122156.Search in Google Scholar PubMed

[73] N. B. Milosavljević, M. Đ. Ristić, A. A. Perić-Grujić, et al.., “Removal of Cu 2+ ions using hydrogels of chitosan, itaconic and methacrylic acid: FTIR, SEM/EDX, AFM, kinetic and equilibrium study,” Colloids Surf. A Physicochem. Eng. Asp., vol. 388, no. 1, pp. 59–69, 2011, https://doi.org/10.1016/j.colsurfa.2011.08.011.Search in Google Scholar

[74] I. Ali, C. Peng, T. Ye, and I. Naz, “Sorption of cationic malachite green dye on phytogenic magnetic nanoparticles functionalized by 3-marcaptopropanic acid,” RSC Adv., vol. 8, no. 16, pp. 8878–8897, 2018, https://doi.org/10.1039/c8ra00245b.Search in Google Scholar PubMed PubMed Central

[75] X. Wang, W. Cai, Y. Lin, G. Wang, and C. Liang, “Mass production of micro/nanostructured porous ZnO plates and their strong structurally enhanced and selective adsorption performance for environmental remediation,” J. Mater. Chem., vol. 20, no. 39, pp. 8582–8590, 2010, https://doi.org/10.1039/c0jm01024c.Search in Google Scholar

[76] J. Acharya, J. Sahu, C. Mohanty, and B. Meikap, “Removal of lead (II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation,” Chem. Eng. J., vol. 149, nos. 1-3, pp. 249–262, 2009, https://doi.org/10.1016/j.cej.2008.10.029.Search in Google Scholar

[77] O. Aldaghri, A. Modwi, H. Idriss, M. Ali, and K. Ibnaouf, “Cleanup of Cd II from water media using Y2O3@ gC3N4 (YGCN) nanocomposite,” Diamond Relat. Mater., vol. 129, 2022, Art. no. 109315, https://doi.org/10.1016/j.diamond.2022.109315.Search in Google Scholar

[78] P. Senthil Kumar, C. Senthamarai, A. Sai Deepthi, and R. Bharani, “Adsorption isotherms, kinetics and mechanism of Pb (II) ions removal from aqueous solution using chemically modified agricultural waste,” Can. J. Chem. Eng., vol. 91, no. 12, pp. 1950–1956, 2013, https://doi.org/10.1002/cjce.21784.Search in Google Scholar

[79] M. A. Ahmad and N. K. Rahman, “Equilibrium, kinetics and thermodynamic of Remazol Brilliant Orange 3R dye adsorption on coffee husk-based activated carbon,” Chem. Eng. J., vol. 170, no. 1, pp. 154–161, 2011, https://doi.org/10.1016/j.cej.2011.03.045.Search in Google Scholar

[80] K. V. Kumar, V. Ramamurthi, and S. Sivanesan, “Biosorption of malachite green, a cationic dye onto Pithophora sp., a fresh water algae,” Dyes Pigments, vol. 69, nos. 1–2, pp. 102–107, 2006, https://doi.org/10.1016/j.dyepig.2005.02.005.Search in Google Scholar

[81] W. Zhu, J. Liu, and M. Li, “Fundamental studies of novel zwitterionic hybrid membranes: kinetic model and mechanism insights into strontium removal,” Sci. World J., vol. 2014, pp. 1–7, 2014. https://doi.org/10.1155/2014/485820.Search in Google Scholar PubMed PubMed Central

[82] A. E. Ofomaja, E. B. Naidoo, and A. Pholosi, “Intraparticle diffusion of Cr (VI) through biomass and magnetite coated biomass: a comparative kinetic and diffusion study,” S. Afr. J. Chem. Eng., vol. 32, no. 1, pp. 39–55, 2020, https://doi.org/10.1016/j.sajce.2020.01.005.Search in Google Scholar

[83] M. Xu, J. Liu, K. Hu, C. Xu, and Y. Fang, “Nickel (II) removal from water using silica-based hybrid adsorbents: fabrication and adsorption kinetics,” Chin. J. Chem. Eng., vol. 24, no. 10, pp. 1353–1359, 2016, https://doi.org/10.1016/j.cjche.2016.05.028.Search in Google Scholar

[84] P. Pal and A. Pal, “Surfactant-modified chitosan beads for cadmium ion adsorption,” Int. J. Biol. Macromol., vol. 104, pp. 1548–1555, 2017, https://doi.org/10.1016/j.ijbiomac.2017.02.042.Search in Google Scholar PubMed

[85] S. Wu, K. Zhang, X. Wang, et al.., “Enhanced adsorption of cadmium ions by 3D sulfonated reduced graphene oxide,” Chem. Eng. J., vol. 262, pp. 1292–1302, 2015, https://doi.org/10.1016/j.cej.2014.10.092.Search in Google Scholar

[86] Y. Bian, Z. Y. Bian, J. X. Zhang, A. Z. Ding, S. L. Liu, and H. Wang, “Effect of the oxygen-containing functional group of graphene oxide on the aqueous cadmium ions removal,” Appl. Surf. Sci., vol. 329, pp. 269–275, 2015, https://doi.org/10.1016/j.apsusc.2014.12.090.Search in Google Scholar

[87] S. Moussa, M. Ali, and R. R. Sheha, “The performance of activated carbon/NiFe2O4 magnetic composite to retain heavy metal ions from aqueous solution,” Chin. J. Chem. Eng., vol. 29, pp. 135–145, 2021, https://doi.org/10.1016/j.cjche.2020.07.036.Search in Google Scholar

[88] M. Goodarz Naseri, E. B. Saion, H. Abbastabar Ahangar, A. H. Shaari, and M. Hashim, “Simple synthesis and characterization of cobalt ferrite nanoparticles by a thermal treatment method,” J. Nanomater., vol. 2010, 2010, https://doi.org/10.1155/2010/907686.Search in Google Scholar

[89] N. Kataria and V. Garg, “Optimization of Pb (II) and Cd (II) adsorption onto ZnO nanoflowers using central composite design: isotherms and kinetics modelling,” J. Mol. Liq., vol. 271, pp. 228–239, 2018, https://doi.org/10.1016/j.molliq.2018.08.135.Search in Google Scholar

Received: 2023-07-12
Accepted: 2023-10-17
Published Online: 2023-11-09
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.5.2024 from https://www.degruyter.com/document/doi/10.1515/zna-2023-0180/html
Scroll to top button