Skip to main content
Log in

Soil compaction mapping by plant height and spectral responses of coffee in multispectral images obtained by remotely piloted aircraft system

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Soil compaction is considered one of the main threats to structural soil degradation, and it promotes increased densification of soil particles, impairs ecosystem services, the plant development, and therefore affects agricultural profitability. In this sense, this study aimed to analyze the feasibility of using a Remotely Piloted Aircraft System (RPAS) by relating parameters derived from aerial images based on Vegetation Indices (VIs) and the Canopy Height Model (CHM) with soil compaction in a coffee plantation area. The study was conducted in a commercial coffee plantation with the cultivar Mundo Novo with 14 years of implantation. Two aerial surveys were carried out, the first to determine the CHM and define the sampling points and the second for radiometric calculations of VIs. In the sampling point were collected data plant height, soil characterization, soil penetration resistance and productivity. Images were processed by Pix4D software, and the data analysis at QGIS and RStudio. As at results, no statistically significant differences were detected between the different plant height zones in the soil chemical analysis; significant statistical differences between plant height zones were detected for penetration resistance, which is correlated to productivity data; and the radiometric data presented a correlation with the penetration resistance data, making it possible to determine VIs (NDRE and MTCI) with correlation to the compaction data allowing the estimation of such variable. In this way, the possibility of monitoring the height variations of the coffee crop using RPAS to demarcate compacted zones was evidenced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  • Alaoui, A., & Diserens, E. (2018). Mapping soil compaction–A review. Current Opinion in Environmental Science & Health, 5, 60–66.

    Article  Google Scholar 

  • Anderson, T. W., & Darling, D. A. (1952). Asymptotic theory of certain goodness of Fit Criteria based on stochastic processes. The Annals of Mathematical Statistics, 23(2), 193–212. http://www.jstor.org/stable/2236446.

    Article  MathSciNet  Google Scholar 

  • Andrade, A. D., Faria, R., De, O., Alonso, D. J. C., Ferraz, G. A. E. S., Herrera, M. A. D., & Silva, F. M. (2018). Spatial Variability Of Soil Penetration Resistance In Coffee Growing. Coffee Science, 13, 341–348.

    Article  Google Scholar 

  • Associação Brasileira De Normas Técnicas - ABNT (1986). NBR 6457/86 – Amostras de solo – Preparação para Ensaios de Compactação e Ensaios de Caracterização. Rio de Janeiro.

  • Barbosa, B. D. S., Araújo e Silva Ferraz, G., Mendes dos Santos, L., Santana, L. S., Bedin Marin, D., Rossi, G., & Conti, L. (2021). Application of RGB images obtained by UAV in Coffee Farming. Remote Sens, 13, 2397. https://doi.org/10.3390/rs13122397.

    Article  ADS  Google Scholar 

  • Barnes, M. L., Breshears, D. D., Law, D. J., Van Leeuwen, W. J. D., Monson, R. K., Fojtik, A. C., et al. (2017). Beyond greenness: Detecting temporal changes in photosynthetic capacity with hyperspectral reflectance data. Plos One, 12(12), e0189539. https://doi.org/10.1371/journal.pone.0189539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batey, T. (2009). Soil compaction and soil management–a review. Soil use and Management, 25(4), 335–345.

    Article  ADS  Google Scholar 

  • Batey, T., & McKenzie, D. C. (2006). Soil compaction: Identification directly in the field. Soil Use and Management, 22(2), 123–131.

    Article  Google Scholar 

  • Belan, L., Jesus Junior, W. C., Souza, A. F., Zambolim, L., Cardoso Filho, J., Barbosa, D. H. S. G., & Moraes, W. B. (2020). Management of coffee leaf rust in Coffea canephora based on Disease monitoring reduces fungicide use and management cost. European Journal of Plant Pathology, 156, 683–694.

    Article  CAS  Google Scholar 

  • Bento, N. L., Ferraz, G. A. S., Barata, R. A. P., Soares, D. V., Santos, L. M., Santana, L. S., Ferraz, P. F. P., Conti, L., & Palchetti, E. (2022a). Characterization of recently planted Coffee cultivars from Vegetation Indices obtained by a remotely piloted Aircraft System. Sustainability, 14, 1446. https://doi.org/10.3390/su14031446.

    Article  Google Scholar 

  • Bento, N. L., Ferraz, G. A. S., Barata, R. A. P., Soares, D. V., Santana, L. S., & Barbosa, B. D. S. (2022b). Estimate and temporal monitoring of height and diameter of the canopy of recently transplanted coffee by a remotely piloted Aircraft System. AgriEngineering, 4, 207–215. https://doi.org/10.3390/agriengineering4010015.

    Article  Google Scholar 

  • Berisso, F. E., Schjønning, P., Keller, T., Lamandé, M., Etana, A., de Jonge, L. W., & Forkman, J. (2012). Persistent effects of subsoil compaction on pore size distribution and gas transport in a loamy soil. Soil and Tillage Research, 122, 42–51. https://doi.org/10.1016/j.still.2012.02.005.

    Article  Google Scholar 

  • Buschmann, C., & Nagel, E. (1993). In Vivo Spectroscopy and Internal Optics of Leaves as basis for remote sensing of Vegetation. International Journal of Remote Sensing, 14, 711–722. https://doi.org/10.1080/01431169308904370.

    Article  ADS  Google Scholar 

  • Campos, M. C. C., et al. (2013). Variabilidade Espacial Da resistência mecânica do solo à penetração e umidade do solo em área cultivada com cana-de-açúcar na região de Humaitá, Amazonas, Brasil. Revista Brasileira De Ciências Agrárias, v. 8(n. 2), 305–310.

    Article  Google Scholar 

  • Cao, Z., Yao, X., Liu, H., Liu, B., Cheng, T., Tian, Y., & Zhu, Y. (2019). Comparison of the abilities of vegetation indices and photosynthetic parameters to detect heat stress in wheat. Agricultural and Forest Meteorology, 265, 121.

    Article  ADS  Google Scholar 

  • Carvalho, L. C. C. (2013). Variabilidade espacial de atributos físicos do solo e características agronômicas da cultura do café. Coffee Science, 8(3), 265–275.

    MathSciNet  Google Scholar 

  • Chen, J. (1996). Evaluation of vegetation indices and modified simple ratio for boreal applications, Canadian. Journal of Remote Sensing, 22, 229–242.

    Google Scholar 

  • Companhia Nacional de Abastecimento - CONAB. Acompanhamento da Safra Brasileira de Café- Primeiro Levantamento (2023) Boletim Safra; Observatório Agrícola: Brasília, Brazil, Volume 1.

  • Dash, J., & Curran, P. J. (2004). The MERIS terrestrial chlorophyll index. International Journal of Remote, 25, 5403. https://doi.org/10.1080/0143116042000274015

    Article  ADS  Google Scholar 

  • Dias, S. M., et al. (2021). Interaction soil compaction and soil moisture in physiological responses of freshly planted coffee. Journal of Environmental Analysis and Progress v, 6(4), 370–378.

    Article  Google Scholar 

  • Empresa Brasileira De Pesquisa Agropecuária - EMBRAPA. (1999). Centro Nacional De pesquisa de solos. Sistema brasileiro de classificação de solos (p. 412). Rio de Janeiro.

  • Falker, (2020). Falker Automação Agrícola. Manual Medidor Digital de Compactação do Solo "penetroLOG PLG2040". Revisão B, 23 p. 06/2020.

  • Fernandes, A. L. T., Santinato, F., & Santinato, R. (2012). Utilização da subsolagem na redução da compactação do solo para produção de café cultivado no cerrado mineiro. Enciclopédia Biosfera, 8(15), 1.

    Google Scholar 

  • Franzini, M., et al. (2019). Geometric and radiometric consistency of parrot sequoia multispectral imagery for precision agriculture applications. Applied Sciences, 9, 5314.

    Article  Google Scholar 

  • Gamon, J. A., & Surfus, J. S. (1999). Assessing leaf pigment content and activity with a reflectometer. New Phytologist, 143, 105–117. https://doi.org/10.1046/j.1469-8137.1999.00424.x.

    Article  CAS  Google Scholar 

  • Girardello, V. C. (2014). Resistência à penetração, eficiência de escarificadores mecânicos e produtividade da soja em Latossolo argiloso manejado sob plantio direto de longa duração. Revista Brasileira de Ciência do Solo, 38, 1234–1244.

    Article  Google Scholar 

  • Grinter, T., & Roberts, C. (2011). Precise Point Positioning: where are we now? In Proceedings of the IGNSS Symposium 201, 1–15.

  • Haboudane, D., et al. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3), 337–352.

    Article  ADS  Google Scholar 

  • Holland, K. H., Lamb, D. W., & Schepers, J. S. (2012). Radiometry of proximal active optical sensors (AOS) for agricultural sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(6), 1793–1802.

    Article  ADS  Google Scholar 

  • Igoni, A. H., & Ayotamuno, J. M. (2016). Maize yield response to induced compaction in a sandy-loam soil. Sustainable Agriculture Research, 5(2), 57. https://doi.org/10.5539/sar.v5n2p57.

    Article  Google Scholar 

  • Jamieson, P. D., Porter, J. R., & Wilson, D. R. (1991). A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crops Research, 27(4), 337–350. https://doi.org/10.1016/0378-4290(91)90040-3.

    Article  Google Scholar 

  • Jensen, J. R. (2009). Sensoriamento Remoto do Ambiente: uma perspectiva em recursos terrestres (p. 598). São José dos Campos: Parêntese.

    Google Scholar 

  • Keller, T., Sandin, M., Colombi, T., & Horn, R. O. R. D. (2019). Historical increase in agricultural machinery weights enhanced soil stress levels and adversely affected soil functioning. Soil and Tillage Research, 194, 104293.

    Article  Google Scholar 

  • Khanal, S., et al. (2021). Assessing the impact of agricultural field traffic on corn grain yield using remote sensing and machine learning. Soil and Tillage Research v, 208, 104880.

    Article  Google Scholar 

  • Khemira, H., Medebesh, A., Mehrez, K. H., & Hamadi, N. (2023). Effect of fertilization on yield and quality of Arabica coffee grown on mountain terraces in southwestern Saudi Arabia. Scientia Horticulturae, 321, 112370.

    Article  CAS  Google Scholar 

  • Klopfenstein, A. A. (2016). An empirical model for estimating corn yield loss from compaction events with tires vs. tracks high axle loads. Master’s Thesis. The Ohio State University, Columbus, OH, USA.

  • Kulkarni, S. G., Bajwa, S. G., & Huitink, G. (2010). Investigation of the efects of soil compaction in cotton. Transactions of the ASABE, 53(3), 667–674. https://doi.org/10.13031/2013.30058.

    Article  CAS  Google Scholar 

  • Leite, D. M., Vieira, L. B., Fernandes, H. C., Carneiro, J. E. S., Fernandes Filho, E. I., & Santos, N. T. (2012). Use of digital images for evaluating soil compaction in the culture of beans. Ciência E Agrotecnologia, 36(2), 217–223.

    Article  Google Scholar 

  • Leyva, P. F. M. (2021). Detection Of Compaction Effects On Crop Growth Using Drone Images And On Soil Water Regime Using Hydrus. Master’s Dissertation. Ghent University.

  • Li, G., Wan, S., Zhou, J., Yang, Z., & Qin, P. (2010). Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. Ind Crop Prod, 31, 13–19.

    Article  Google Scholar 

  • Lidong Ren. (2020). Evaluation of soil compaction: effects, prevention, alleviation and detection. PhD Thesis, Ghent University, Ghent, Belgium.

  • Lindenstruth, F. (2020). Padrões espaço-temporais de sinais de colheita: as imagens multiespectrais baseadas em UAV são uma ferramenta adequada para detectar a compactação do solo em escala de campo? EGU General Assembly, Online, 4–8, EGU2020- 19619, https://doi.org/10.5194/egusphere-egu2020-19619.

  • Lipiec, J., Medvedev, V. V., Birkas, M., Dumitru, E., Lyndina, T. E., Rousseva, S., & Fulajtar, E. (2003). Effect of soil compaction on root growth and crop yield in Central and Eastern Europe. International agrophysics, 17(2), 1.

    Google Scholar 

  • Manik, S. M., Pengilley, G., Dean, G., Field, B., Shabala, S., & Zhou, M. (2019). Soil and crop management practices to minimize the impact of waterlogging on crop productivity. Frontiers in Plant Science, 10, 140.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mao, W., Wang, Y., & Wang, Y. (2003). Real-time detection of between-row weeds using machine vision. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2003.

  • Marin, D. B., et al. (2021a). Detecting coffee leaf rust with UAV-based vegetation indices and decision tree machine learning models. Computers and Electronics in Agriculture, 190, 106476.

    Article  Google Scholar 

  • Marin, D. B., Ferraz, G. A. S., Guimarães, P. H. S., Schwerz, F., Santana, L. S., Barbosa, B. D. S., Barata, R. A. P., Faria, R. O., Dias, J. E. L., Conti, L., & Rossi, G. (2021b). Remotely Piloted Aircraft and Random Forest in the evaluation of the spatial variability of Foliar Nitrogen in Coffee Crop. Remote Sens, 3, 1471. https://doi.org/10.3390/rs13081471.

    Article  ADS  Google Scholar 

  • Marin, D. B., Ferraz, G. A. S., Schwerz, F., et al. (2021c). Unmanned aerial vehicle to evaluate frost damage in coffee plants. Precision Agriculture, 22, 1845–1860. https://doi.org/10.1007/s11119-021-09815-w.

    Article  CAS  Google Scholar 

  • Martins, P. C. C., et al. (2012). Compaction caused by mechanized operations in a red-yellow latosol cultivated with coffee over time. Ciência E Agrotecnologia, 36, 391–398.

    Article  Google Scholar 

  • Martins, F. B., Gonzaga, G., Dos Santos, D. F., & Reboita, M. S. (2018). Classificação Climática de Köppen e de Thornthwaite para Minas Gerais: Cenário Atual e Projeções Futuras. Revista Brasileira de Climatologia, 1, 129–156.

    Article  Google Scholar 

  • Meyer, G. E., Hindman, T. W., & Lakshmi, K. (1998). Machine vision detection parameters for plant species identification. In: Meyer, G.E., DeShazer, J.A. (Eds.), Precision Agriculture and Biological Quality, Proceedings of SPIE. vol. 3543, Bellingham, WA, pp. 327–335.

  • Mileusnić, Z. I., Saljnikov, E., Radojević, R. L., & Petrović, D. V. (2022). Soil compaction due to agricultural machinery impact. Journal of Terramechanics, 100, 51–60.

    Article  Google Scholar 

  • Oborne, M. (2018). Mission Planner. Retrieved 30 Mar, 2021 from Available in https://ardupilot.org/planner/index.html

  • Olubanjo, O. O., & Yessoufou, M. A. (2019). Effect of Soil Compaction on the Growth and Nutrient Uptake of Zea Mays L. Sustainable Agriculture Research, 8, 46–54.

    Article  Google Scholar 

  • Organização Internacional Do Café - IOC (2022). Available in: http://www.ico.org/.

  • Pacheco, L. P., et al. (2015). Influência Da densidade do solo em atributos da parte aérea e sistema radicular de crotalária. Pesquisa Agropecuária Tropical, 45, 464–472.

    Article  Google Scholar 

  • Ponti, M., Chaves, A. A., Jorge, F. R., Costa, G. B., Colturato, A., & Branco, K. R. (2016). Precision agriculture: Using low-cost systems to acquire low-altitude images. IEEE Computer Graphics and Applications, 36(4), 14–20.

    Article  PubMed  Google Scholar 

  • Ponzoni, F. J., & Shimabukuro, Y. E. (2010). Sensoriamento remoto no estudo da vegetação (p. 127). Parêntese.

    Google Scholar 

  • Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55, 95–107.

    Article  ADS  Google Scholar 

  • Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. In S. C. Freden, E. P. Mercanti, & M. Becker (Eds.), Third Earth Resources Technology Satellite–1 Syposium (pp. 309–317). NASA.

    Google Scholar 

  • Santana, L. S., Ferraz, G. A. S., Cunha, J. P. B., Santana, M. S., Faria, R. O., Marin, D. B., Rossi, G., Conti, L., Vieri, M., & Sarri, D. (2021). Monitoring errors of Semi-mechanized Coffee planting by remotely Piloted Aircraft. Agronomy, 11, 1224. https://doi.org/10.3390/agronomy11061224.

    Article  Google Scholar 

  • dos Santos, L. M. (2022). Vegetation indices applied to suborbital multispectral images of healthy coffee and coffee infested with coffee leaf miner. AgriEngineering, 4, 311–319.

    Article  Google Scholar 

  • Santos, L. M., dos., et al. (2019). Use of remotely piloted aircraft in precision agriculture: A review. Dyna v, 86, 284–291.

    Google Scholar 

  • Secco, D., et al. (2009). Atributos físicos e rendimento de grãos de trigo, soja e milho em dois latossolos compactados e escarificados. Ciência Rural, 39, 58–64.

    Article  ADS  Google Scholar 

  • Serrano, L., Filella, I., & Pen˜uelas, J. (2000). Remote sensing of Biomass and Yield of Winter Wheat under different Nitrogen supplies. Crop Science, 40(3), 723. https://doi.org/10.2135/cropsci2000.403723x.

    Article  Google Scholar 

  • Shaheb, M. D. R., Venkatesh, R., & Shearer, S. A. (2021). A review on the effect of soil compaction and its management for sustainable crop production. Journal of Biosystems Engineering, 46, 1–23.

    Article  Google Scholar 

  • Shanahan, J. F., Schepers, J. S., Francis, D. D., Varvel, G. E., Wilhelm, W. W., Tringe, J. M., Schlemmmer, M. R., & Major, D. J. (2001). Use of remote-sensing imagery to estimate corn grain yield. Agronomy Journal, 93, 583–589.

    Article  Google Scholar 

  • Silva, A. R., et al. (2006). Modelagem da capacidade de suporte de carga e quantificação dos efeitos das operações mecanizadas em um Latossolo Amarelo cultivado com cafeeiros. Revista Brasileira de ciência do Solo, 30, 207–216.

    Article  Google Scholar 

  • Silva, J. A. da., (2018). Respostas fisiológicas da soja submetida ao estresse hídrico e compactação do solo. Tese (doutorado)-Universidade Federal de Lavras.

  • Silva, D. D., Pruski, F. F., Schaefer, C. E. G. R., Amorim, R. S. S., & Paiva, K. W. N. (2005). Efeito Da cobertura nas perdas de solo em um Argissolo Vermelho-Amarelo utilizando simulador de chuva. Engenharia Agrícola, 25(2), 409–419.

    Article  Google Scholar 

  • Sjulgard, H., Iseskog, D., Kirchgessner, N., Bengough, A. G., Keller, T., & Colombi, T. (2021). Reversible and irreversible root phenotypic plasticity under fluctuating soil physical conditions. Environmental and Experimental Botany, 188, 104494.

    Article  Google Scholar 

  • Soil Survey Staff (1993). Soil Survey Manual: Examination and Description of Soil Profiles USDA-SCS. U.S. Gov. Print. Office. 437 p.

  • Souza, L. S., Mafra, A. L., Souza, L. D., Da Silva, I. F., & Klein, V. A. (2019). Interrelação entre manejo e atributos físicos do solo. In I. Bertol, I. C. De Maria, & L. S. Souza (Eds.), Manejo e conservação do solo e da água (pp. 193–249). Sociedade Brasileira de Ciência do Solo.

    Google Scholar 

  • Taylor, H. I. M., & Brar, G. S. (1991). Effect of soil compaction on root development. Soil and Tillage Research, 19, 2–3.

    Article  Google Scholar 

  • Toigo, S., Possenti, J. C., Braida, J. A., & Toigo, C. (2010). Componentes de rendimento de trigo cultivado em um nitossolo vermelho em função do nível de compactação inicial e sistemas de manejo de recuperação do solo. Seminário: Sistemas de Produção Agropecuária-Ciências Agrárias. Animais e Florestais.

    Google Scholar 

  • Tormena, C. A., Barbosa, M. C., Costa, A. C. S., & Gonçalves, A. C. A. (2002). Soil bulk density, porosity and resistance to root penetration in an oxisol managed by different soil tillage systems. Sci Agr, 59(4), 795–801.

    Article  Google Scholar 

  • Vaz, C. M. P., Manieri, J. M., de Maria, I. C., & Tuller, M. (2011). Modeling and correction of soil penetration resistance for varying soil water content. Geoderma, 166(1), 92–101.

    Article  ADS  Google Scholar 

  • Wang, F. M., Huang, J. F., Tang, Y. L., & Wang, X. Z. (2007). New vegetation index and its application in estimating leaf area index of rice. Rice Science, 14(3), 195–203.

    Article  Google Scholar 

  • Yang, Z., Willis, P., & Mueller, R. (2008). Impact of Band-Ratio Enhanced AWIFS Image to Crop Classification Accuracy. In: Pecora – The Future of Land Imaging… Going Operational, 17. 2008, Denver, Colorado, USA. Proceedings Maryland: (ASPRS).

  • Zhang, S., Grip, H., & Lövdahl, L. (2006). Effect of soil compaction on hydraulic properties of two loess soils in China. Soil and Tillage Research, 90(1–2), 117–125. https://doi.org/10.1016/j.still.2005.08.01.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Embrapa Café - Consórcio Pesquisa Café, the National Council for Scientific and Technological Development (CNPq), the Coordination for the Improvement of Higher Education Personnel (CAPES), the Federal University of Lavras (UFLA), and Bom Jardim Farm.

Funding

This research was funded by the National Council for Scientific and Technological Development (CNPq) (project 305953/2020-6) and Embrapa Café - Coffee Research Consortium (project 10.18.20.041.00.00).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by all authors. The first draft of the manuscript was written by [NLB] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nicole Lopes Bento.

Ethics declarations

Conflicts of interest

Not applicable.

Ethical approval

This material is the authors' own original work, which has not been previously published elsewhere. The paper is not currently being considered for publication elsewhere. The paper reflects the authors' own research and analysis in a truthful and complete manner.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bento, N.L., Silva Ferraz, G.A., Santana, L.S. et al. Soil compaction mapping by plant height and spectral responses of coffee in multispectral images obtained by remotely piloted aircraft system. Precision Agric 25, 729–750 (2024). https://doi.org/10.1007/s11119-023-10090-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-023-10090-0

Keywords

Navigation