Skip to main content

Advertisement

Log in

Catalytic Hydrodehalogenation of Haloarenes with Hydrogen and Hydrogen-Containing Compounds: A Review

  • Published:
Theoretical and Experimental Chemistry Aims and scope

New catalytic methods for the hydrodehalogenation of haloarenes with hydrogen and hydrogen-containing reagents (metal and non-metal hydrids, organic hydrogen-containing compounds, etc.), which are essential for fine organic synthesis and neutralization of toxic production waste and persistent organic pollutants. The paper focuses on such catalysts as complexes of stable heterocyclic carbenes, transition metals, and nanosized metal particles and their composites, as the most promising for industrial chemistry. Catalysts with particularly high efficiency have been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Scheme 3.
Scheme 4.
Scheme 5.
Scheme 6.
Scheme 7.
Scheme 8.
Scheme 9.
Scheme 10.
Scheme 11.
Scheme 12.
Scheme 13.
Scheme 14.
Scheme 15.
Scheme 16.
Scheme 17.
Scheme 18.
Scheme 19.
Scheme 20.
Scheme 21.
Scheme 22.
Scheme 23.
Scheme 24.
Scheme 25.
Scheme 26.
Scheme 27.
Scheme 28.
Scheme 29.
Scheme 30.

Similar content being viewed by others

Abbreviations

AC:

activated carbon

AIBN:

azoisobutyronitrile

All:

allyl anion

A-Phos:

4-(t-Bu)2P-(1-NMe2)-benzene

BDIMHn:

bisdiimine complexes of metal hydrides

BDP:

o-bis-diphenylphosphinobenzene

BMIm:

1-butyl-3-methylimidazolium

CBP:

chlorobiphenyls

Cp:

cyclopentadienyl

Cp*:

pentamethylcyclopentadienyl

dba:

dibenzylideneacetone

dbep:

2,6-dibenzhydryl-4-ethylphenyl

dbmp:

2,6-dibenzhydryl-4-methylphenyl

dbp:

2,6-dibenzhydrylphenyl

DCB:

dichlorobenzenes

DDT:

dichlorodiphenyltrichloromethylmetane

dppb:

1,4-bis-(Ph2P)-butane

dppe:

1,2-bis-(Ph2P)-ethane

dppf:

(Ph2P)-ferrocene

dtbpf:

bis-(t-Bu)2P-ferrocene

HDB:

hydrodebromination

HDC:

hydrodechlorination

HDF:

hydrodefluorination

HDH:

hydrodehalogenation

HDI:

hydrodeiodination

IAd:

1,3-di(1-adamantyl)imidazol-2-ylidene

ICy:

1,3-dicyclohexylimidazol-2-ylidene

IMes:

1,3-dimesitylimidazol-2-ylidene

IPr:

1,3-di(2,6-diisopropylphenyl)imidazol-2-ylidene

POP:

stable organic pollutants

S-Phos:

2-(2,6-dimethoxyphenyl)-phenyl-2-PCy2-benzene

SIMes:

1,3-dimesityl-4,5-dihydroimidazol-2-ylidene

SIPr:

1,3-di(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene

TBDPE:

tetrabromodiphenyl ether

tbpf:

(t-Bu)2P-ferrocene

TCB:

trichlorobenzene

TeCDD:

tetrachlorodibenzodioxin

TEMPO:

2,2,6,6-tetramethylpiperidinyl-1-yl)oxyl

THF:

tetrahydrofuran

THP:

4H-tetrahydropyran

TMDS:

tetramethyldisiloxane

TMEDA:

tetramethylethylenediamine

TON:

turnover number (number of catalytic conversion cycles)

TOF:

turnover frequency (TON per unit of time)

X-Phos:

1-dipp-2-PCy2-benzene

References

  1. C. Rappe, Pure Appl. Chem., 68, 1781-1789 (1996). https://doi.org/10.1351/pac199668091781.

    Article  CAS  Google Scholar 

  2. E. Wikstorm, M. Tysklind, and S. Marklund, Environ. Sci. Technol., 33, 4263-4269 (1999). https://doi.org/10.1021/es990568b.

    Article  CAS  Google Scholar 

  3. T. I. Gorbunov, V. I. Saloutin, and O. N. Chupakhin, Rus. Chem. Rev., 79, 565-586 (2010). https://doi.org/10.1070/RC2010v079n06ABEH004047.

    Article  CAS  Google Scholar 

  4. O. Papke and M. Dellarco, Organohal. Compd., 33, 462-466 (1997). https://doi.org/10.1016/S0045-6535(98)00237-9.

    Article  Google Scholar 

  5. Ma C., Yu J., Wang B. et. al., Renew. Sustain. Ener. Rev., 61, 433-450 (2016). https://doi.org/10.1016/j.rser.2016.04.020.

    Article  CAS  Google Scholar 

  6. O. S. Keen, K. Y. Bell, C. Cherchi, et. al., Water Environ. Res., 86, 2036-2096 (2014). https://www.jstor.org/stable/26662297.

  7. M. P. Rayaroth, E. Escobedo, and Y.-S. Chang, Comprehen. Anal. Chem., 88, 303-339 (2020). https://doi.org/10.1016/bs.coac.2019.11.003.

    Article  CAS  Google Scholar 

  8. M. K. Whittlesey and E. Peris, ACS Catal., 4, 3152-3159 (2014). https://doi.org/10.1021/cs500887p.

    Article  CAS  Google Scholar 

  9. S.-D. Yang, Homogeneous Catalysis for Unreactive Bond Activation, Z.-J. Shi (ed.), John Wiley and Sons, Inc. (2015) 241-250. https://doi.org/10.1002/9781118788981.ch2.

  10. Z.-X. Wang and W.-J. Guo. Homogeneous Catalysis for Unreactive Bond Activation, Z.-J. Shi Wiley (ed.), 1-199 (2015).

  11. J. D. Nguyen, E.M. D’Amato, and C. R. J. Stephenson. Comprehensive Organic Synthesis, Eds. P. Knochel and G. A. Molander, Elsevier, 8, 1123-1142 (2014).

  12. T. J. Strathmann, C. J . Werth, and J. R . Shapley. Nanotechnology Applications for Clean Water, N. Savage, M. Diallo, J. Duncan, et al.(eds.), William Andrew Inc., 269-279 (2009).

  13. M. A. Aramendýa, V. Borau, I. M. Garcý, et. al., C. R. Acad. Sci. Paris, Ser. IIc, 3, 465-470 (2000).

  14. B. Sahoo, A.-E. Surkus, M.-M. Pohl, et. al., Angew. Chem. Int. Ed., 56, 11242-11247 (2017). https://doi.org/10.1002/anie.201702478.

    Article  CAS  Google Scholar 

  15. R. Baumgartner and K. McNeill, Environ. Sci. Technol., 46, 10199-10205 (2012). https://doi.org/10.1021/es302188f.

    Article  CAS  PubMed  Google Scholar 

  16. R. Baumgartner, G. K. Stieger, and K. McNeill, Environ. Sci. Technol., 47, 6545-6553 (2013). https://doi.org/10.1021/es401183v.

    Article  CAS  PubMed  Google Scholar 

  17. H. Nakai, K. Jeong, T. Matsumoto, and S. Ogo, Organometallics, 33, 4349-4352 (2014). https://doi.org/10.1021/om500647h.

    Article  CAS  Google Scholar 

  18. Wu W., Xu J., and Ohnishi R., Appl. Catal. B., 60, 129-137 (2005). https://doi.org/10.1016/j.apcatb.2005.03.003.

    Article  CAS  Google Scholar 

  19. A. Reina, C. Pradel, E. Martin, et. al., RSC Adv., 6, 93205-93216 (2016). https://doi.org/10.1039/C6RA19230K.

    Article  CAS  Google Scholar 

  20. C. Schüth and M. Reinhard, Appl. Catal. B., 18, 215-221 (1998). https://www.academia.edu/5179410.

  21. P. J. Naik, Y. An, S. L. Sedinkin, et. al., ACS Catal., 11, 10553-10564 (2021). https://doi.org/10.1021/acscatal.1c02716.

    Article  CAS  Google Scholar 

  22. A. Perosa, M. Selva, and T. Maschmeyer, Chemosphere, 173, 535-541 (2017). https://doi.org/10.1016/j.chemosphere.2017.01.062.

    Article  CAS  PubMed  Google Scholar 

  23. and , Tetrahedron Lett., 55, 5386-5389 (2014). https://doi.org/10.1016/j.tetlet.2014.08.008.

  24. M. Kanai and M. Beller, Org. Biomol. Chem., 19, 702-704 (2021). https://doi.org/10.1039/D0OB90177F.

    Article  CAS  PubMed  Google Scholar 

  25. S. Mallick, S. Rana, and K. Parida, Ind. Eng. Chem. Res., 50, 12439-12448 (2011). https://doi.org/10.1021/ie201142j.

    Article  CAS  Google Scholar 

  26. G. La Sorella, L. Sperni, P. Canton, et. al., J. Org. Chem., 83, 7438-7446 (2018). https://doi.org/10.1021/acs.joc.8b00314.

    Article  CAS  PubMed  Google Scholar 

  27. J. A. Baeza, L. Calvo, J. J. Rodriguez, and M.A. Gilarranz, Chem. Eng. J., 294, 40-48 (2016). https://doi.org/10.1016/j.cej.2016.02.107.

    Article  CAS  Google Scholar 

  28. K. J. Betsy, A. Lazar, and C.P. Vinod, Nano-Struct. Nano-Objects, 13, 36-43 (2018). https://doi.org/10.1016/j.nanoso.2017.11.004

    Article  CAS  Google Scholar 

  29. C. Lu, M. Wang, Z. Feng, et. al., Catal. Sci. Technol., 7, 1581-1589 (2017). https://doi.org/10.1039/C7CY00157F

    Article  CAS  Google Scholar 

  30. C. Lu, Q. Zhu, X. Zhang, et al., ACS Sustain. Chem. Eng. 7, 8542-8553 (2019). https://doi.org/10.1021/acssuschemeng.9b00322.

    Article  CAS  Google Scholar 

  31. W. Yu, L.-L. Lou, S. Li, et al., RSC Adv., 7, 751-757 (2017). https://doi.org/10.1039/C6RA24773C

    Article  CAS  Google Scholar 

  32. X. Liu, S. Wang, Q. Dai, and X. Wang, Catal. Commun., 48, 33-37 (2014). https://doi.org/10.1016/j.catcom.2014.01.006

    Article  CAS  Google Scholar 

  33. C. Bradu, C. Capat, F. Papa, et. al., Appl. Catal. A., 570, 120-129 (2019). https://doi.org/10.1016/j.apcata.2018.11.002

    Article  CAS  Google Scholar 

  34. Y. Zhao, X. Feng, S. Zhang, et al., ChemCatChem, 12, 4951-4957 (2020). https://doi.org/10.1002/cctc.202000674.

    Article  CAS  Google Scholar 

  35. A. Yuan, H. Zhao, W. Shan, et al., ACS EST Eng., 1, 1036-1045 (2021). https://doi.org/10.1021/acsestengg.1c00108.

    Article  CAS  Google Scholar 

  36. C. Coperet, D. P. Estes, K. Larmier, and K. Searles, Chem. Rev., 116, 8463-8505 (2016). https://doi.org/10.1021/acs.chemrev.6b00082.

    Article  CAS  PubMed  Google Scholar 

  37. D. Sadowsky, K. McNeill, and C. J. Cramer, Environ. Sci. Technol. 48, 10904-10911 (2014). https://doi.org/10.1021/es5028822.

    Article  CAS  PubMed  Google Scholar 

  38. J. H. Zhan, H. Lv, Y. Yu, and J.-L. Zhang, Adv. Synth. Catal., 354, 1529 - 1541 (2012). https://doi.org/10.1002/adsc.201100843.

    Article  CAS  Google Scholar 

  39. H. Lv, J.-H. Zhan, Y.-B. Cai, et al., J. Am. Chem. Soc., 134, 16216 -16227 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. H. Miura, Y. Masaki, Y. Fukuta, and T. Shishido, Adv. Synth. Cat., 2642-2650 (2020).

  41. J. J. Wu, and S. Cao, ChemCatChem, 3, 1582-1586 (2011).

    Article  CAS  Google Scholar 

  42. W. W. Zhao, J. J. Wu, and S. Cao, Adv. Synth. Catal., 354, 574-578 (2012).

    Article  CAS  Google Scholar 

  43. Y. He, Z. Chen, C. Y. He, and X. G. Zhang, Chin. J. Chem., 31, 873-877 (2013).

    Article  CAS  Google Scholar 

  44. G. M. Noonan, B. R.Hayter, A. D.Campbell, et al., Tetrahedron Lett., 54, 4518-4521 (2013).

  45. Z. Chen, C. Y. He, Z. S. Yin, et. al., Angew. Chem. Int. Ed., 52, 5813-5817 (2013).

    Article  CAS  Google Scholar 

  46. J. Xiao, J. J. Wu, W. W. Zhao, and S. Cao, J. Fluor. Chem., 146, 76-79 (2013).

    Article  CAS  Google Scholar 

  47. J. Breitenfeld, R. Scopelliti, and X. Hu, Organometallics, 31, 2128-2136 (2012).

    Article  CAS  Google Scholar 

  48. D. Wang and J. R. Gardinier, Eur. J. Inorg. Chem., 2020, No. 47, 4425-4434 (2020).

    Article  CAS  Google Scholar 

  49. Z. Wang, X. Li, H. Sun, et. al., Organometallics, 37, 539-544 (2018).

    Article  Google Scholar 

  50. A. Bhattacharjya, P. Klumphu. and B. H. Lipshutz, Org. Lett., 17, 1122-1125 (2015).

  51. G. Chelucci, S. Baldino, and A. Ruiu, J. Org. Chem., 77, 9921-9925 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. S. Itsuno, Boron Reagents in Synthesis. ACS Symposium Ser., A. Coca (ed.), Washington, American Chemical Society, 296 (2016).

  53. G. Chelucci, G. A. Pinna, and G. Pinna, Eur. J. Org. Chem., 18, 3802-3807 (2014).

    Article  Google Scholar 

  54. J. Gui, X. Cai, L. Chen, et. al., Org. Chem. Front., 8, 4685-4692 (2021).

    Article  CAS  Google Scholar 

  55. T. D. Schoch, M. Mondal, and J. D. Weaver, Org. Lett., 23, 1588-1593 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Long X., Chen W., Lei C., et al., Sci. Total Environ., 775, 145178 (2021).

    Article  CAS  Google Scholar 

  57. K. Biswas, S. Chattopadhyay, Y. Jing et al., Ind. Eng. Chem. Res., 58, 2159-2169 (2019).

    Article  CAS  Google Scholar 

  58. M. Weidauer, E. Irran, C. I. Someya, et. al., J. Organomet. Chem., 729, 53-59 (2013).

    Article  CAS  Google Scholar 

  59. H. Goksu, Y. Yildiz, B. Celik, et. al., ChemistrySelect, 5, 953 -958 (2016).

    Article  Google Scholar 

  60. X. Guo, C. Yu, Z. Yin, S. Sun, and C.T. Seto, ChemSusChem, 11, 1617-1620 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. M. Muzzio, H. Lin, K. Wei, et al., ACS Sustain. Chem. Eng., 8, 2814-2821 (2020).

    Article  CAS  Google Scholar 

  62. N. M. Hein, F. S. Pick, and M. D. Fryzuk, Inorg. Chem., 56, 14513-14523 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. J. Vela, J. M. Smith, Y. Yu, et al., J. Am. Chem. Soc., 127, 7857-7870 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. M. K. Cybulski, D. McKay, S. A. Macgregor, et. al., Angew. Chem. Int. Ed., 56, 1515-1519 (2017).

    Article  CAS  Google Scholar 

  65. M. K. Cybulski, I. M. Riddlestone, M. F. Mahon, et al., Dalton Trans., 44, 19597-19605 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. J. A. Panetier, S. A. Macgregor, and M. K. Whittlesey, Angew. Chem. Int. Ed., 50, 2783 -2786 (2011).

    Article  CAS  Google Scholar 

  67. D. McKay, I. M. Riddlestone, S. A. Macgregor, et. al., ACS Catal., 5, 776-787 (2015).

    Article  CAS  Google Scholar 

  68. M. K. Cybulski, C. J. E. Davies, J. P. Lowe et. al., Inorg. Chem., 57, 13749-13760 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. M. E. Cucullu, S. P. Nolan, T. R. Belderrain, and R. H. Grubbs, Organometallics, 18, 1299-1304 (1999).

    Article  CAS  Google Scholar 

  70. S. A. Macgregor, D. McKay, J. A. Panetier, and M. K. Whittlesey, Dalton Trans., 42, 7386-7395 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. H. Fang, Q. He, G. Liu, and Z. Huang, Org. Lett., 22, 9298-9302 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. N. A. Phillips, J. O’Hanlon, T. N. Hooper, et al., Org. Lett., 21, 7289-7293 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. O. Ekkert, S. D. A. Strudley, A. Rozenfeld, et. al., Organometallics, 33, 7027 - 7030 (2014).

    Article  CAS  Google Scholar 

  74. L. Zamostna, M. Ahrens, and T. Braun, J. Fluorine Chem., 155, 132 - 142 (2013).

    Article  CAS  Google Scholar 

  75. M. K. Cybulski, J. E. Nicholls, J. P. Lowe, et. al., Organometallics, 36, 2308-2316 (2017).

    Article  CAS  Google Scholar 

  76. L. Schwartsburd, M. F. Mahon, R. C. Poulten, et. al., Organometallics, 33, 6165-6170 (2014).

    Article  CAS  Google Scholar 

  77. S. H. Yow, S. J. Gates, A. J. P. White, and M. R. Crimmin, Angew. Chem. Int. Ed., 51, 12559-12563 (2012).

    Article  CAS  Google Scholar 

  78. H. Lv, Y.-B. Cai, and J.-L. Zhang, Angew. Chem. Int. Ed., 52, 3203-3207 (2013).

    Article  CAS  Google Scholar 

  79. A. J. Jordan, G. Lalic, and J. P. Sadighi, Chem. Rev., 116, 8318-8372 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. G. Podolan, D. Lentz, and H.-U. Reissig, Angew. Chem. Int. Ed., 2013, 52, 9491-9494 (2013).

    Article  Google Scholar 

  81. D. Dunlop, J. Pinkas, M. Horacek, et. al., Dalton Trans., 49, 2771-2775 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. T. L. Gianetti, R. G. Bergman, and J. Arnold, Chem. Sci., 5, 2517-2524 (2014).

  83. J. Zhang, J.-D. Yang, and J.-P. Cheng, Chem. Sci., 11, 4786-4790 (2020).

  84. J. Zhang, J. Yang, and J. Cheng, Chem. Sci., 11, 3672-3679 (2020).

  85. K. Kikushima, M. Grellier, M. Ohashi, and S. Ogoshi, Angew. Chem. Int. Ed., 56, 16191-16196 (2017).

    Article  CAS  Google Scholar 

  86. A. D. Jaeger, D. Lentz, and Z. Anorg., Allgem. Chem., , 1229-1233 (2018).

  87. T. Stahl, H. F. T. Klare, and M. Oestreich, ACS Catal., 3, 1578-1587 (2013).

    Article  CAS  Google Scholar 

  88. H. Schneider, A. Hock, A. D. Jaeger, et. al., Eur. J. Inorg. Chem., 4031-4043.

  89. A. S. S.Wilson, M. S.Hill, M. F.Mahon, et. al., Tetrahedron, 82, 131931 (2021).

  90. M. Wiesinger, B. Rosch, C. Knupfer, et. al., Eur. J. Inorg. Chem., 3731-3741 (2021).

  91. D. Y. Ong, C. Tejo, K. Xu, et. al., Angew. Chem. Int. Ed. 56, 1-6 (2017).

    Article  Google Scholar 

  92. F. St-Jean, K. A. Piechowicz, L. E. Sirois, et. al., Organometallics, 38, 119-128 (2019).

    Article  CAS  Google Scholar 

  93. Y.-J. Niu, G.-H. Sui, H.-X. Zheng, et. al., J. Org. Chem., 84, 10805-10813 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Y. Yamamoto, K. Nogi, H. Yorimitsu, and A. Osuka, ChemistrySelect, 2, 1723-1727 (2017).

    Article  CAS  Google Scholar 

  95. A. M. Vasquez, J. A. Gurak, Jr., C. L. Joe, et. al., J. Am. Chem. Soc., 142, 10477-10484 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. A. Matsunami and Y. Kayaki, Tetrahedron Lett., 59, 504-513 (2018).

    Article  CAS  Google Scholar 

  97. N. I. Korotkikh and O.P. Shvaika. Organic Reactions Catalysis By Carbenes And Metal Carbene Complexes, LAP Lambert Academic Publishing (2015).

  98. W. Liu and F. Wang, Tetrahedron Lett., 58, 1673-1676 (2017).

    Article  CAS  Google Scholar 

  99. Y. Ukisu and T.Miyadera, J. Mol. Cat. A., 125, 135-142 (1997).

    Article  CAS  Google Scholar 

  100. J. B. Ernst, C. Schwermann, G. Yokota, et. al., J. Am. Chem. Soc. 139, 9144-9147 (2017).

    Article  CAS  PubMed  Google Scholar 

  101. Y. Sawama, Y. Yabe, M. Shigetsura, et. al., Adv. Syn. Cat., 354, 777-782 (2012).

    Article  CAS  Google Scholar 

  102. Z. Xue, X. Zhao, J. Wang, and T. Mu, RSC Adv., 6, 102193-102197 (2016).

    Article  CAS  Google Scholar 

  103. L. Fang, L. Xu, J. Li, and L.-Z. Huang, Sci. Total Environ., 683, 275-283 (2019).

    Article  CAS  PubMed  Google Scholar 

  104. M. Lei, Z. Wang, Y. Tang, et. al., Appl. Cat. B., 275, 119093 (2020).

    Article  CAS  Google Scholar 

  105. I. Favier, M.-L. Toro, P. Lecante, et. al., Catal. Sci. Technol., 8, 4766-4773 (2018).

    CAS  Google Scholar 

  106. Kim J. Y., Jo Y., Lee S., and Choi H. C. Tetrahedron Lett., 50, 6290-6292 (2009).

    Article  CAS  Google Scholar 

  107. S. L. Herrera and A. L. Villa, Catalysis Today, 356, 241-254 (2020).

    Article  CAS  Google Scholar 

  108. Min H., Lee S., Park M. et. al., J. Organomet. Chem., 755, 7-11 (2014).

    Article  CAS  Google Scholar 

  109. I. Parveen, D. Khan, and N. Ahmed, Eur. J. Org. Chem. 2019, 759-764.

  110. R. Garrido, P. S. Hernandez-Montes, A. Gordillo, et. al., Organometallics, 34, 1855-1863 (2015).

    Article  CAS  Google Scholar 

  111. A. Ruhling, L. Rakers, and F. Glorius, ChemCatChem, 9, 547-550 (2017).

    Article  Google Scholar 

  112. X. Bei, A. Hagemeyer, A. Volpe, et. al., J. Org. Chem., 69, 8626-8633 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. A. S. Guram, Org. Process Res. Dev., 20, 1754-1764 (2016).

    Article  CAS  Google Scholar 

  114. R. C. Nishad, S. Kumar, and A. Rit, Organometallics, 40, 915-926 (2021).

    Article  CAS  Google Scholar 

  115. S. Hohloch, N. Deibel, D. Schweinfurth, et. al., Eur. J. Inorg. Chem., 2014, No. 12, 2131-2139 (2014).

    Article  CAS  Google Scholar 

  116. M. S. Viciu, G. A. Grasa, and S. P. Nolan, Organometallics, 20, 3607 - 3612 (2001).

    Article  CAS  Google Scholar 

  117. O. Navarro, N. Marion, Y. Oonishi, et al., J. Org. Chem., 71, 685-692 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. O. Navarro, H. Kaur, P. Mahjoor, S. P. and Nolan, J. Org. Chem., 69, 3173-3180 (2004).

  119. N. Marion and S. P. Nolan, Acc. Chem. Res., 41, 1440-1449 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. C. J. E. Davies, M. J. Page, C. E. Ellul, et al., Chem. Commun., 46, 5151-5153 (2010).

    Article  CAS  Google Scholar 

  121. S. Berardi, M. Carraro, M. Iglesias, et. al., Chem. Eur. J., 16, 10662 - 10666 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. S. Kuhl, R. Schneider, and Y. Fort, Adv. Synth. Catal., 345, 341-344 (2003).

    Article  CAS  Google Scholar 

  123. C. Desmarets, S. Kuhl, R. Schneider, and Y. Fort, Organometallics, 21, 1554-1559 (2002).

    Article  CAS  Google Scholar 

  124. S. Akzinnay, F. Bisaro, and C. S. Cazin, Chem. Commun., 45, 5752-5753 (2009).

    Article  Google Scholar 

  125. A. Rühling, L. Rakers, and F. Glorius, ChemCatChem, 9, 547-550 (2016).

    Article  Google Scholar 

  126. V.Sh. Saberov, N.I. Korotkikh, N.V. Glinyanaya, et. al., Rep. Ukr. Acad. Sci., No. 2, 112-117 (2013).

  127. N. I. Korotkikh, V. Sh. Saberov, N. V. Glinyanaya, et. al., Chem. Het. Comp., 49, No. 1, 19-38 (2013).

    Article  CAS  Google Scholar 

  128. V. Sh. Saberov, D. A. Evans, N. I. Korotkikh, et. al., Dalton Trans., 43, 18117-18122 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. H. Clavier and S. P. Nolan, Chem. Commun., 46, 841-861 (2010).

    Article  CAS  Google Scholar 

  130. V.Sh. Saberov, A.V. Avksentiev, G.F. Rayenko, et. al., Ukr. Khim. Zh., No. 1, 67-81 (2022).

  131. N. V. Glinyanaya, V. Sh. Saberov, N. I. Korotkikh, et. al., Dalton Trans., 43, 16227-16237 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. D. L. Ladd, P. B. Harrsch, and L. I. Kruse, J. Org. Chem., 53, 417-420 (1988).

    Article  CAS  Google Scholar 

  133. K.L. Konkol and S. C. Rasmussen, Eur. J. Org. Chem., 2008, 801-804.

  134. K. L. Konkol and S. C. Rasmussen, Organometallics, 35, 3234-3239 (2016).

    Article  CAS  Google Scholar 

  135. S. Sabater, J. A. Mata, and E. Peris, Nat. Commun., 4, 2553 (2013).

    Article  PubMed  Google Scholar 

  136. J. J. Gair, R. L. Grey, S. Giroux, and M. A. Brodney, Org. Lett., 21, 2482-2487 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. S. Sabater, J. A. Mata, and E. Peris, Organometallics, 34, 1186-1190 (2015).

    Article  CAS  Google Scholar 

  138. V. H. Mai and G. I. Nikonov, ACS Catal., 6, 7956-7961 (2016).

    Article  CAS  Google Scholar 

  139. M. C. Haibach, B. M. Stoltz, and R. H. Grubbs, Angew. Chem. Int. Ed., 56, 15123 -15126 (2017).

    Article  CAS  Google Scholar 

  140. N. Marozsan, H. Horváth A. Erdei, and F. Joo, J. Mol. Cat. A., 425, 103-109 (2016).

  141. J.-J. Brunet and M. Taillefer, J. Organomet. Chem. 348, C5-Ñ8 (1988).

  142. A. Matsunami, S. Kuwata, and Y. Kayaki, ACS Catal., 6, 5181-5185 (2016).

    Article  CAS  Google Scholar 

  143. A. Matsunami, Y. Kayaki, S. Kuwata, and T. Ikariya, Organometallics, 37, 1958-1969 (2018).

    Article  CAS  Google Scholar 

  144. K. Fujita, M. Owaki, and R. Yamaguchi, Chem. Commun., 2002, 2964-2965.

  145. J. Li, T. Zheng, H. Sun, and X. Li, Dalton Trans., 42, 13048-13053 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. K. S. Chan, C. R. Liu, and K. L. Wong, Tetrahedron Letters, 56, 2728-2731 (2015).

    Article  CAS  Google Scholar 

  147. C. Chen, H. Z. Kin, and S. Chan, Tetrahedron, 75, 510-517 (2019).

    Article  CAS  Google Scholar 

  148. A. A. Facundo, A. Arevalo, G. Fundora-Galano, et. al., New J. Chem., 43, 6897-6908 (2019).

  149. M. Mousavi, M. Bakavoli, A. Shiri, and H. Eshghi, ACS Sustain. Chem. Eng., 6, 5852-5857 (2018).

    CAS  Google Scholar 

  150. H.-X. Zheng, X.-H. Shan, J.-P. Qu, and Y.-B. Kang, Org. Lett., 19, 5114-5117 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. M. P. Drapeau, I. Fabre, L. Grimaud, et. al., Angew. Chem., Int. Ed., 54, 10587-10591 (2015).

Download references

Acknowledgements

The work was performed with the financial support of the National Academy of Sciences of Ukraine (grant No. 6.2/2-2023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Korotkikh.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 59, No. 3, pp. 135-153, May-June, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saberov, V.S., Rayenko, G.F., Avksentiev, A.S. et al. Catalytic Hydrodehalogenation of Haloarenes with Hydrogen and Hydrogen-Containing Compounds: A Review. Theor Exp Chem 59, 151–177 (2023). https://doi.org/10.1007/s11237-023-09775-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-023-09775-4

Keywords

Navigation